High Performance, Parallel Computing for NEES, The Plastic Domain Decomposition Method

Boris Jeremić and Guanzhou Jie

Department of Civil and Environmental Engineering University of California, Davis

NEES annual meeting, Washington DC, June 2006

Outline

High Performance Computing (HPC) for NEES Need for HPC: SFSI Hypothesis SFSI can be Beneficial and/or Detrimental

Plastic Domain Decomposition (PDD) Method HPC Simulations for Large Inelastic SFSI Models PDD: Current Status

High Performance Computing (HPC) for NEES

Outline

High Performance Computing (HPC) for NEES Need for HPC: SFSI Hypothesis SFSI can be Beneficial and/or Detrimental

Plastic Domain Decomposition (PDD) Method HPC Simulations for Large Inelastic SFSI Models PDD: Current Status

UCDAVIS

High Performance Computing (HPC) for NEES

└─ Need for HPC: SFSI Hypothesis

SFSI Hypothesis: Energy Balance

- Energy input from the earthquake
- Energy dissipation in SFS system:
 - Inelasticity of the superstructure (plasticity, damage, friction, active and passive dampers)
 - Inelasticity of the foundation system (piles, shallow foundations)
 - Inelasticity of soils around piles, shallow foundations and abutments (plasticity; viscous coupling of solids and fluids (water, air...)

UCDAVIS

Radiation damping

High Performance Computing (HPC) for NEES

SFSI can be Beneficial and/or Detrimental

SFS System Changes

- Earthquake intensity increase (with predominant period)
- SFS system period is elongated
- Earthquake period and SFS period might coincide for some time
- If energy dissipation > input ⇒ probably small damage in SFS system
- If energy dissipation < input ⇒ probably large damage in SFS system, possibly resonance

Plastic Domain Decomposition (PDD) Method

Outline

High Performance Computing (HPC) for NEES Need for HPC: SFSI Hypothesis SFSI can be Beneficial and/or Detrimental

Plastic Domain Decomposition (PDD) Method HPC Simulations for Large Inelastic SFSI Models PDD: Current Status

Plastic Domain Decomposition (PDD) Method

HPC Simulations for Large Inelastic SFSI Models

PDD Method: Design Goals

- ► Graph partitioning → balance multiple phases simultaneously, while also minimizing the inter-processor communications costs
- It is a multi-objective optimization problem (minimize both the inter-processor communications, the data redistribution costs and create balanced partitions)
- > Take into the account (deterministic or probabilistic):
 - heterogeneous element loads that change in each iteration

- heterogeneous processor performance (multiple generations nodes)
- inter-processor communications (LAN or WAN)
- data redistribution costs

Plastic Domain Decomposition (PDD) Method

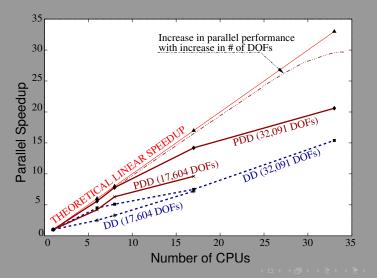
HPC Simulations for Large Inelastic SFSI Models

PDD Method: Implementation

- Perform global optimization for both (a) internal state determination and system of equatons solution phases
- Adaptive partitioning done using ParMETIS
- Iterative system of equations solver PETSC
- OpenSees: standard interface and framework
- Works on SMPs, local DMPs, grids of computers

- Plastic Domain Decomposition (PDD) Method

PDD: Current Status


Features

- Initial domain partitioning
- Adaptive domain repartitioning depending on CPU imbalance, LAN and/or WAN performance
- Repartitioning works with loads, constraints..., all necessary movable objects
- Available for all elements (solid, structural) that provide the standard OpenSees interface (sendSelf, RecvSelf, timer or CL weight estimate)
- Scalable to a large number of CPUs
- Using implicit, iterative solver (PETSC)
- Performance tuning (local cluster GeoWulf, SDSC, TACC,)

- Plastic Domain Decomposition (PDD) Method

PDD: Current Status

Speedup Overview

SFS Interaction Behavior of a Prototype Bridge

Outline

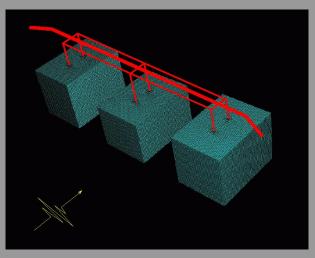
High Performance Computing (HPC) for NEES Need for HPC: SFSI Hypothesis SFSI can be Beneficial and/or Detrimental

Plastic Domain Decomposition (PDD) Method HPC Simulations for Large Inelastic SFSI Models PDD: Current Status

SFS Interaction Behavior of a Prototype Bridge

Model Description

Detailed 3D, FEM model

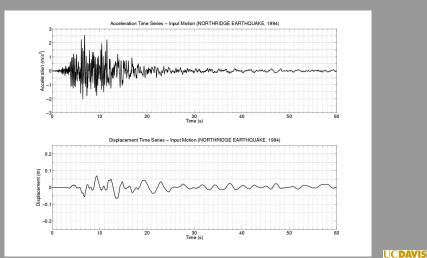

- Construction process
- > Two types of soil: stiff soil (UT, UCD), soft soil (Bay Mud)
- Deconvolution of given surface ground motions
- Use of the DRM (Prof. Bielak et al.) for seismic input
- \triangleright Piles \rightarrow beam-column elements in soil holes
- Structural model developed at UCB (Prof. Fenves et al.)
- Element size issues (filtering of frequencies)

model size	el. size	f _{cutoff}	min. <i>G/Gmax</i>	γ
12K	1.0 m	10 Hz	1.0	<0.5 %
15K	0.9 m	>3 Hz	0.08	1.0 %
150K	0.3 m	10 Hz	0.08	1.0 %

SFS Interaction Behavior of a Prototype Bridge

Model Description

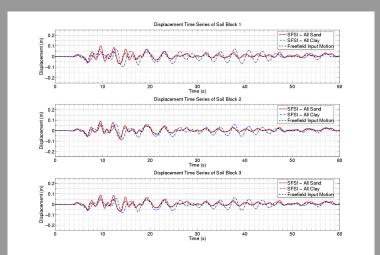
FEM Mesh (one of)


UCDAVIS

《曰》《卽》《臣》《臣》

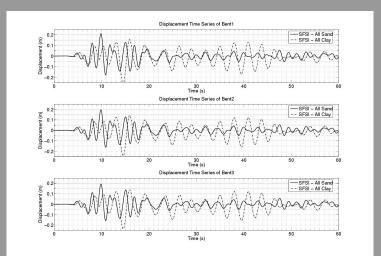
SFS Interaction Behavior of a Prototype Bridge

-Selected Results


Input Motions, Northridge (one of)

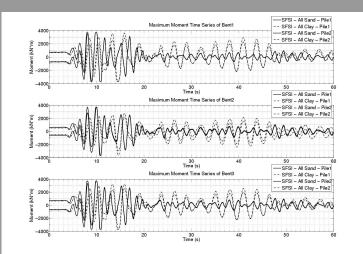
SFS Interaction Behavior of a Prototype Bridge

-Selected Results


Changes to the Free Field Input Motions: SFSI

SFS Interaction Behavior of a Prototype Bridge

-Selected Results


Structure Displacements

SFS Interaction Behavior of a Prototype Bridge

-Selected Results

Moment Redistributions

Need for high fidelity modeling of SFSI to gain better understanding of the system performance

SFSI energy balance hypothesis

HPC SFSI simulations are available, ready to be used

