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Probabilistic Elasto–Plasticity

Motivation

Historical Overview

Types of Uncertainties
I Epistemic uncertainty - uncertainty due to lack of

knowledge
I Can be reduced by collecting more data
I Mathematical tools (neural network, fuzzy logic etc.) are not

well developed → trade-off with aleatory uncertainty
I Aleatory uncertainty - inherent variation of physical system

I Can not be reduced
I Has highly developed mathematical tools (classical

second-order analysis) to deal with
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Probabilistic Elasto–Plasticity

Motivation

Historical Overview

Brownian Motions
I Governing (Langevin) equation:

m
dv
dt

= F (x)− βv + η(t)

I Probability density function (PDF) of particle displacement
obeys a simple diffusion equation (Einstein (1905)):

∂f (x , t)
∂t

= D
∂2f (x , t)
∂x2

I Addition of external forces (gravity, elastic or magnetic
attraction) → Fokker-Planck-Kolmogorov (FPK) equation
governs the PDF (Kolmogorov 1941)

I Alternately, Monte Carlo method can be used for solution
of Langevin equation → computationally very expensive
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Motivation

Historical Overview

Stochastic Systems: Random Forcing

I Classical approach: relationship between the
autocorrelation function and spectral density function
(Wiener 1930) → Paved the way to the solution of general
stochastic differential equation (SDE)

I SDEs with random forcing → Highly developed
mathematical theory for Itô type equation:

dx = a(x , t)dt + b(x , t)dW

I Solution is a Markov process
I PDF of solution process satisfies a FPK PDE

∂p (x , t)
∂t

= − ∂

∂x
[a(x , t)p (x , t)] +

1
2
∂2

∂x2

[
b2(x , t)p (x , t)

]
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Motivation

Historical Overview

Stochastic Systems: Random Coefficient

I Approximate Solution methods
I Functional integration approach (Hopf 1952)
I Averaged equation approach (Bharrucha-Reid 1968)
I Numerical approaches
I Monte Carlo method

I FPK equation for the characteristic functional of the
solution for problem of wave propagation in random media
(Lee 1974)

I Eulerian-Lagrangian form of FPK equation for probabilistic
solution of flow through porous media (Kavvas 2003)
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Motivation

Uncertainties in Material

Material Uncertainties

I Material’s (concrete, metals, soil, rock, bone, foam, powder
etc.) behavior is inherently uncertain

I Spatial variability
I Point-wise uncertainty - testing error, transformation error

I Failure mechanisms related to spatial variability (strain
localization and bifurcation of response)

I Inverse problems
I New material design, (point-wise)
I Solid and/or structure design (or retrofits), (spatial)
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Motivation

Uncertainties in Material

Soil: Inside Failure (MGM)



Probabilistic Elasto–Plasticity

Motivation

Uncertainties in Material

Soil: Spatial Variation (Mayne et al. (2000))



Probabilistic Elasto–Plasticity

Motivation

Uncertainties in Material

Soil Uncertainties and Quantifications

I Natural variability of soil deposit (Fenton 1999) → function
of soil formation process

I Testing error (Stokoe et al. 2004)
I Imperfection of instruments
I Error in methods to register quantities

I Transformation error (Phoon and Kulhawy 1999)
I Correlation by empirical data fitting (e.g. CPT data →

friction angle etc.)
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Motivation

Uncertainties in Material

Probabilistic material (Soil Site) Characterization

I Ideal: complete probabilistic site characterization
I Large (physically large but not statistically) amount of data

I Site specific mean and coefficient of variation (COV)
I Covariance structure from similar sites (e.g. Fenton 1999)

I Minimal data: general guidelines for typical sites and test
methods (Phoon and Kulhawy (1999))

I COVs and covariance structures of inherent variabilities
I COVs of testing errors and transformation uncertainties.

I Moderate amount of data → Bayesian updating (e.g.
Phoon and Kulhawy 1999, Baecher and Christian 2003)
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Probabilistic Elasto–Plasticity

Boundary Value Problem

Propagation of Uncertainties in Mechanics (Geomechanics)

Propagation of Uncertainties in Mechanics

Governing equation

I Dynamic problems → Mü + Cü + Ku = φ

I Static problems → Ku = φ

Existing solution methods

I Random r.h.s (external force random)
I FPK equation approach
I Use of fragility curves with deterministic FEM

I Random l.h.s (material properties random)
I Monte Carlo approach with DFEM → CPU expensive
I Stochastic finite element method (Perturbation method, fails

if COVs of soil > 20% ; Spectral method → elastic material)
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Boundary Value Problem

Stochastic Finite Element Method

Truncated Karhunen–Loeve Expansion
for Input Field

I Input random fields represented in eigen-modes of
covariance kernel

I Error minimizing property
I Minimizes number of stochastic dimensions

Exact cov. surface 1-term 2-terms 3-terms

Model covariance kernel: C(x1, x2) = e−|x1−x2|/b

Truncated K-L approximation: C(x1, x2) =
∑M

k=1 λk fk (x1)fk (x2)
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Boundary Value Problem

Stochastic Finite Element Method

Polynomial Chaos (PC) Expansion for DOFs

I DOF covariance kernel is not known a priori (unknown
eigenvalues ej and eigenvectors bj(x))
u(x , θ) =

∑L
j=1 ej χj(θ) bj(x)

I DOFs expressed as functionals of known input random
variables and unknown deterministic function
u(x , θ) = ζ[ξi(θ), x ]

I Need a basis of known random variables → PC expansion
χj(θ) =

∑P
i=0 γ

(j)
i ψi [{ξr}];

u(x , θ) =
∑L

j=1
∑P

i=0 γ
(j)
i ψi [{ξr}]ejbj(x) =∑P

i=0 ψi [{ξr}]di(x)

I Deterministic coefficients can be found by minimizing norm
of error of finite representation (e.g. using Galerkin
scheme)
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Boundary Value Problem

Stochastic Finite Element Method

SSEPFEM Formulation

N∑
n=1

Kmndni +
N∑

n=1

P∑
j=0

dnj

M∑
k=1

CijkK ′
mnk = 〈Fmψi [{ζr}]〉

Kmn =

∫
D

BnDBmdV K ′
mnk =

∫
D

Bn
√
λkhkBmdV

Cijk =
〈
ζk (θ)ψi [{ζr}]ψj [{ζr}]

〉
Fm =

∫
D
φNmdV

I Generalized DOF
I Material (soil) nonlinearity → Constitutive integration at

Gauss point → Probabilistic Elasto–Plasticity
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Probabilistic Elasto–Plasticity

Probabilistic Elastic–Plastic: Differential Equation

Uncertainty Propagation through Constitutive Eq.
I General 3-D elastic-plastic constitutive law →

dσij

dt
= Dijkl

dεkl

dt

Dijkl =



Del
ijkl for elastic

Del
ijkl −

Del
ijmn

∂U
∂σmn

∂f
∂σpq

Del
pqkl

∂f
∂σrs

Del
rstu

∂U
∂σtu

− ∂f
∂q∗

r∗
for elastic–plastic

I Non–linear coupling in the coefficient (elastic–plastic
modulus)

I Focusing on 1-D constitutive Behavior → a nonlinear ODE
with random coefficient and random forcing

dσ(x , t)
dt

= β(σ(x , t),Del(x),q(x), r(x); x , t)
dε(x , t)

dt
= η(σ,Del ,q, r , ε; x , t) with an I.C. σ(0) = σ0
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Probabilistic Elasto–Plasticity

Probabilistic Elastic–Plastic: Differential Equation

Previous Works
I Linear algebraic or differential equations → Analytical

solution:
I Variable Transformation Method (Montgomery and Runger

2003)
I Cumulant Expansion Method (Gardiner 2004)

I Nonlinear differential equations
(elasto-plastic/viscoelastic-viscoplastic):

I Monte Carlo Simulation (Schueller 1997, De Lima et al
2001, Mellah et al. 2000, Griffiths et al. 2005...)

I Perturbation Method (Anders and Hori 2000, Kleiber and
Hien 1992, Matthies et al. 1997)

I Monte Carlo method: accurate, very costly
I Perturbation method: first and second order Taylor series

expansion about mean - limited to problems having small
C.O.V. and inherits ’closure problem’
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Probabilistic Elasto–Plasticity

Probabilistic Elastic–Plastic: Differential Equation

Problem Statement
I General 3-D elastic-plastic constitutive law:

dσij =

Del
ijkl −

Del
ijmn

∂U
∂σmn

∂f
∂σpq

Del
pqkl

∂f
∂σrs

Del
rstu

∂U
∂σtu

− ∂f
∂q∗

r∗

 dεkl

I Focusing on 1-D constitutive Behavior → a nonlinear ODE
with random coefficient and random forcing

dσ(x , t)
dt

= β(σ(x , t),Del(x),q(x), r(x); x , t)
dε(x , t)

dt
= η(σ,Del ,q, r , ε; x , t)

with an initial condition σ(0) = σ0



Probabilistic Elasto–Plasticity

Probabilistic Elasto–Plasticity

Probabilistic Elastic–Plastic: Differential Equation

Stochastic Continuity (Liouville) Equation

∂ρ(σ(x , t), t)
∂t

=

− ∂

∂σ

[
η(σ(x , t),Del(x),q(x),

r(x), ε(x , t))
]
ρ[σ(x , t), t ]

Initial condition:
ρ(σ,0) = δ(σ − σ0)

ρ(σ,0) → density of
probabilistic solutions in

σ space
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Probabilistic Elasto–Plasticity

Probabilistic Elastic–Plastic: Differential Equation

Ensemble Average form of Liouville Equation
→ van Kampen’s Lemma → < ρ(σ, t) >= P(σ, t), ensemble
average of phase density is the probability density;
→ Continuity equation written in ensemble average form (eg.
cumulant expansion method (Kavvas and Karakas 1996)):

∂ 〈ρ(σ(xt , t), t)〉
∂t

= − ∂

∂σ

»fi
η(σ(xt , t), Del(xt), q(xt), r(xt), ε(xt , t))

fl
+

Z t

0
dτCov0

»
∂η(σ(xt , t), Del(xt), q(xt), r(xt), ε(xt , t))

∂σ
;

η(σ(xt−τ , t − τ), Del(xt−τ ), q(xt−τ ), r(xt−τ ), ε(xt−τ , t − τ)

–ff
〈ρ(σ(xt , t), t)〉

–
+

∂2

∂σ2

»Z t

0
dτCov0

»
η(σ(xt , t), Del(xt), q(xt), r(xt), ε(xt , t));

η(σ(xt−τ , t − τ), Del(xt−τ ), q(xt−τ ), r(xt−τ ), ε(xt−τ , t − τ))

– ff
〈ρ(σ(xt , t), t)〉

–
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Probabilistic Elasto–Plasticity

Probabilistic Elastic–Plastic: Differential Equation

Eulerian–Lagrangian FPK Equation

∂P(σ(xt , t), t)
∂t

= − ∂

∂σ

»fi
η(σ(xt , t), Del(xt), q(xt), r(xt), ε(xt , t))

fl
+

Z t

0
dτCov0

»
∂η(σ(xt , t), Del(xt), q(xt), r(xt), ε(xt , t))

∂σ
;

η(σ(xt−τ , t − τ), Del(xt−τ ), q(xt−τ ), r(xt−τ ), ε(xt−τ , t − τ)

–ff
P(σ(xt , t), t)

–
+

∂2

∂σ2

»Z t

0
dτCov0

»
η(σ(xt , t), Del(xt), q(xt), r(xt), ε(xt , t));

η(σ(xt−τ , t − τ), Del(xt−τ ), q(xt−τ ), r(xt−τ ), ε(xt−τ , t − τ))

– ff
P(σ(xt , t), t)

–
I Complete probabilistic description of response
I Second-order exact to covariance of time
I Deterministic equation (in probability density space)
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Probabilistic Elasto–Plasticity

Probabilistic Elastic–Plastic: Differential Equation

Solution of FPK Equation

I FPK equation → advection-diffusion equation or continuity
equation

∂P(σ, t)
∂t

= − ∂

∂σ

[
N(1)P(σ, t)− ∂

∂σ

{
N(2)P(σ, t)

}]
= −∂ζ

∂σ

I Initial condition
I Deterministic → Dirac delta function → P(σ,0) = δ(σ)
I Random → Any given distribution

I Boundary condition: Reflecting BC → conserves
probability mass ζ(σ, t)|At Boundaries = 0

I Numerical scheme → Finite Difference Technique
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Probabilistic Elasto–Plasticity

Probabilistic Elastic–Plastic: Differential Equation

Application of FPK equation to Material Models

I FPK equation is applicable to any incremental
elastic–plastic material model (only the coefficients N(1)

and N(2) differ)
I Unique attributes of probabilistic solution

I Solution in terms of PDF, not a single value of stress
I Influence of initial condition on the PDF of stress
I Transition between elastic and elastic–plastic
I Symmetry and non–symmetry in PDF of stress
I Differences in mean, mode and deterministic solution of

stress
I Interaction of random soil properties on the PDF of stress
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Probabilistic Elasto–Plasticity

Probabilistic Elastic–Plastic Response

Elastic Response with Random G

I General form of elastic constitutive rate equation

dσ12

dt
= 2G

dε12

dt
= η(G, ε12; t)

I Advection and diffusion coefficients of FPK equation

N(1) = 2
dε12

dt
< G >

N(2) = 4t
(

dε12

dt

)2

Var [G]
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Probabilistic Elastic–Plastic Response

Elastic Response with Random G
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Probabilistic Elasto–Plasticity

Probabilistic Elastic–Plastic Response

Verification – Variable Transformation Method
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Probabilistic Elasto–Plasticity

Probabilistic Elastic–Plastic Response

Drucker-Prager Linear Hardening with Random G

dσ12

dt
= Gep dε12

dt
= η(σ12,G,K , α, α′, ε12; t)

Advection and diffusion coefficients of FPK equation

N(1) =
dε12

dt

〈
2G − G2

G + 9Kα2 +
1√
3

I1α′

〉

N(2) = t
(

dε12

dt

)2

Var

2G − G2

G + 9Kα2 +
1√
3

I1α′
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Probabilistic Elastic–Plastic Response

Drucker-Prager Linear Hardening
with Random G
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I Approximation of I.C.
I Smooth transition between el. & el.-pl.
I Symmetry in probability distribution
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Probabilistic Elastic–Plastic Response

Verification of D–P E–P Response - Monte Carlo

0.004 0.008 0.012 0.01489

0.001

0.002

0.003

Time (Sec)
0

Strain (%) 0.08040

St
re

ss
 (M

Pa
)

(Actual)

(Actual)

Std. Deviation Lines

Mean Line

Mean Line

Std. Deviation Lines
(Fokker−Planck)

(Fokker−Planck)



Probabilistic Elasto–Plasticity

Probabilistic Elasto–Plasticity

Probabilistic Elastic–Plastic Response

Modified Cam Clay Constitutive Model

dσ12

dt
= Gep dε12

dt
= η(σ12,G,M,e0,p0, λ, κ, ε12; t)

η =

2G −

(
36

G2

M4

)
σ2

12

(1 + e0)p(2p − p0)
2

κ
+

(
18

G
M4

)
σ2

12 +
1 + e0

λ− κ
pp0(2p − p0)


Advection and diffusion coefficients of FPK equation

N(i)
(1) =

〈
η(i)(t)

〉
+

∫ t

0
dτcov

[
∂η(i)(t)
∂t

; η(i)(t − τ)

]

N(i)
(2) =

∫ t

0
dτcov

[
η(i)(t); η(i)(t − τ)

]
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Probabilistic Elastic–Plastic Response

Low OCR Cam Clay with
Random G
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I Non-symmetry in probability distribution!
I Response at critical state fairly certain but different than

deterministic
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Probabilistic Elastic–Plastic Response

Low OCR Cam Clay with
Random G, M and p0
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I Divergence at critical state because M is uncertain
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Probabilistic Elastic–Plastic Response

Comparison of Low OCR Cam Clay at ε = 1.62 %
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I None coincides with deterministic
I Some cases are very uncertain while some are fairly

certain
I Either on safe or unsafe side
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Probabilistic Elastic–Plastic Response

High OCR Cam Clay with
Random G and M
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I Very uncertain transition between el. & el.-pl.
I Differences between mean, mode, and deterministic

responses
I Divergence at critical state, M is uncertain
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Probabilistic Elasto–Plasticity

Probabilistic Elastic–Plastic Response

Conclusions

I A new approach to account for uncertainties in
elastic–plastic material simulation

I Methodology, which results in a FPK equation, overcomes
the drawbacks of Monte Carlo Method and Perturbation
Technique

I Advantage of FPK equation is evident as it transforms the
original non–linear stochastic ODE to a linear deterministic
PDE

I Developed methodology is capable of providing complete
probabilistic description (PDF) of the solution

I Development is general in nature and applicable to any
incremental elastic–plastic material model
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