The Role of Material Variability and Uncertainty in Elastic-Plastic Finite Element Simulations

Boris Jeremić and Kallol Sett

Department of Civil and Environmental Engineering University of California, Davis

1st South-East European Conference on Computational Mechanics, June 28-30, 2006, Kragujevac, Serbia and Montenegro

Outline

Motivation Historical Overview Uncertainties in Material

Boundary Value Problem

Propagation of Uncertainties in Mechanics (Geomechanics) Stochastic Finite Element Method

Probabilistic Elasto–Plasticity

Probabilistic Elastic–Plastic: Differential Equation Probabilistic Elastic–Plastic Response

-Motivation

Outline

Motivation Historical Overview Uncertainties in Material

Boundary Value Problem

Propagation of Uncertainties in Mechanics (Geomechanics) Stochastic Finite Element Method

Probabilistic Elasto–Plasticity Probabilistic Elastic–Plastic: Differentia

Probabilistic Elastic–Plastic Response

-Historical Overview

Types of Uncertainties

- Epistemic uncertainty uncertainty due to lack of knowledge
 - Can be reduced by collecting more data
 - Mathematical tools (neural network, fuzzy logic etc.) are not well developed → trade-off with aleatory uncertainty
- > Aleatory uncertainty inherent variation of physical system
 - Can not be reduced
 - Has highly developed mathematical tools (classical second-order analysis) to deal with

-Historical Overview

Brownian Motions

Governing (Langevin) equation:

$$m\frac{dv}{dt} = F(x) - \beta v + \eta(t)$$

Probability density function (PDF) of particle displacement obeys a simple diffusion equation (Einstein (1905)):

$$\frac{\partial f(x,t)}{\partial t} = D \frac{\partial^2 f(x,t)}{\partial x^2}$$

- Addition of external forces (gravity, elastic or magnetic attraction) → Fokker-Planck-Kolmogorov (FPK) equation governs the PDF (Kolmogorov 1941)
- ► Alternately, Monte Carlo method can be used for solution of Langevin equation → computationally very expensive UCDAVIS

-Historical Overview

Stochastic Systems: Random Forcing

- Classical approach: relationship between the autocorrelation function and spectral density function (Wiener 1930) → Paved the way to the solution of general stochastic differential equation (SDE)
- SDEs with random forcing → Highly developed mathematical theory for Itô type equation:

$$dx = a(x, t)dt + b(x, t)dW$$

- Solution is a Markov process
- PDF of solution process satisfies a FPK PDE

$$\frac{\partial p(x,t)}{\partial t} = -\frac{\partial}{\partial x} \left[a(x,t)p(x,t) \right] + \frac{1}{2} \frac{\partial^2}{\partial x^2} \left[b^2(x,t)p(x,t) \right]$$

-Historical Overview

Stochastic Systems: Random Coefficient

- Approximate Solution methods
 - Functional integration approach (Hopf 1952)
 - Averaged equation approach (Bharrucha-Reid 1968)
 - Numerical approaches
 - Monte Carlo method
- FPK equation for the characteristic functional of the solution for problem of wave propagation in random media (Lee 1974)
- Eulerian-Lagrangian form of FPK equation for probabilistic solution of flow through porous media (Kavvas 2003)

- Uncertainties in Material

Material Uncertainties

- Material's (concrete, metals, soil, rock, bone, foam, powder etc.) behavior is inherently uncertain
 - Spatial variability
 - Point-wise uncertainty testing error, transformation error
- Failure mechanisms related to spatial variability (strain localization and bifurcation of response)
- Inverse problems
 - New material design, (point-wise)
 - Solid and/or structure design (or retrofits), (spatial)

Uncertainties in Material

Soil: Inside Failure (MGM)

Computed tomography (CT) images of resin-impregnated MGM specimens (above), are assembled to provide 3-D volume renderings (below) of density patterns formed by diffused bifurcation under the external loading stress profile applied during the experiments.

Uncertainties in Material

Soil: Spatial Variation (Mayne et al. (2000))

- Uncertainties in Material

Soil Uncertainties and Quantifications

- ▷ Natural variability of soil deposit (Fenton 1999) \rightarrow function of soil formation process
- Testing error (Stokoe et al. 2004)
 - Imperfection of instruments
 - Error in methods to register quantities
- Transformation error (Phoon and Kulhawy 1999)
 - Solution by empirical data fitting (e.g. CPT data \rightarrow friction angle etc.)

- Uncertainties in Material

Probabilistic material (Soil Site) Characterization

- Ideal: complete probabilistic site characterization
- Large (physically large but not statistically) amount of data
 - Site specific mean and coefficient of variation (COV)
 - Covariance structure from similar sites (e.g. Fenton 1999)
- Minimal data: general guidelines for typical sites and test methods (Phoon and Kulhawy (1999))
 - COVs and covariance structures of inherent variabilities
 - COVs of testing errors and transformation uncertainties.

UCDAVIS

Moderate amount of data → Bayesian updating (e.g. Phoon and Kulhawy 1999, Baecher and Christian 2003)

–Boundary Value Problem

Outline

Motivation Historical Overview Uncertainties in Material

Boundary Value Problem

Propagation of Uncertainties in Mechanics (Geomechanics) Stochastic Finite Element Method

UCDAVIS

Probabilistic Elasto–Plasticity

Probabilistic Elastic–Plastic: Differential Equation

Probabilistic Elastic–Plastic Response

-Boundary Value Problem

- Propagation of Uncertainties in Mechanics (Geomechanics)

Propagation of Uncertainties in Mechanics

Governing equation

- ▷ Dynamic problems $\rightarrow M\ddot{u} + C\ddot{u} + Ku = \phi$
- Static problems $\rightarrow Ku = \phi$
- Existing solution methods
 - Random r.h.s (external force random)
 - FPK equation approach
 - Use of fragility curves with deterministic FEM
 - Random I.h.s (material properties random)
 - ▶ Monte Carlo approach with DFEM \rightarrow CPU expensive
 - ▷ Stochastic finite element method (Perturbation method, fails if COVs of soil > 20%; Spectral method \rightarrow elastic material)

- Boundary Value Problem

-Stochastic Finite Element Method

Truncated Karhunen–Loeve Expansion for Input Field

- Input random fields represented in eigen-modes of covariance kernel
- Error minimizing property
- Minimizes number of stochastic dimensions

Model covariance kernel: $C(x_1, x_2) = e^{-|x_1-x_2|/b}$ Truncated K-L approximation: $C(x_1, x_2) = \sum_{k=1}^{M} \lambda_k f_k(x_1) f_k(x_2)$

-Boundary Value Problem

Stochastic Finite Element Method

Polynomial Chaos (PC) Expansion for DOFs

- ► DOF covariance kernel is not known a priori (unknown eigenvalues e_j and eigenvectors $b_j(x)$) $u(x, \theta) = \sum_{j=1}^{L} e_j \chi_j(\theta) b_j(x)$
- DOFs expressed as functionals of known input random variables and unknown deterministic function
 u(*x*, θ) = ζ[ξ_i(θ), *x*]
- Need a basis of known random variables \rightarrow PC expansion $\chi_j(\theta) = \sum_{i=0}^{P} \gamma_i^{(j)} \psi_i [\{\xi_r\}];$ $u(x, \theta) = \sum_{j=1}^{L} \sum_{i=0}^{P} \gamma_i^{(j)} \psi_i [\{\xi_r\}] e_j b_j(x) =$ $\sum_{i=0}^{P} \psi_i [\{\xi_r\}] d_i(x)$
- Deterministic coefficients can be found by minimizing norm of error of finite representation (e.g. using Galerkin scheme)

-Boundary Value Problem

Stochastic Finite Element Method

SSEPFEM Formulation

$$\sum_{n=1}^{N} K_{mn} d_{ni} + \sum_{n=1}^{N} \sum_{j=0}^{P} d_{nj} \sum_{k=1}^{M} C_{ijk} K'_{mnk} = \langle F_m \psi_i[\{\zeta_r\}] \rangle$$

$$K_{mn} = \int_{D} B_n D B_m dV$$
 $K'_{mnk} = \int_{D} B_n \sqrt{\lambda_k} h_k B_m dV$

 $C_{ijk} = \left\langle \zeta_k(\theta) \psi_i[\{\zeta_r\}] \psi_j[\{\zeta_r\}] \right\rangle \qquad F_m = \int_D \phi N_m dV$

- Generalized DOF
- Material (soil) nonlinearity → Constitutive integration at Gauss point → Probabilistic Elasto–Plasticity

Outline

Motivation Historical Overview Uncertainties in Material

Boundary Value Problem Propagation of Uncertainties in Mechanics (Geomechanics) Stochastic Finite Element Method

Probabilistic Elasto-Plasticity

Probabilistic Elastic–Plastic: Differential Equation Probabilistic Elastic–Plastic Response

Probabilistic Elastic-Plastic: Differential Equation

Uncertainty Propagation through Constitutive Eq.

- General 3-D elastic-plastic constitutive law → $\frac{d\sigma_{ij}}{dt} = D_{ijkl} \frac{d\epsilon_{kl}}{dt}$ $D_{ijkl} = \begin{cases} D_{ijkl}^{el} \\ D_{ijkl}^{el} - \frac{D_{ijmn}^{el} \frac{\partial U}{\partial \sigma_{mn}} \frac{\partial f}{\partial \sigma_{pq}} D_{pqkl}^{el}}{\frac{\partial f}{\partial \sigma_{rs}} D_{rstu}^{el} \frac{\partial U}{\partial \sigma_{tu}} - \frac{\partial f}{\partial q_*} r_*} & \text{for elastic-plastic} \end{cases}$
- > Focusing on 1-D constitutive Behavior \rightarrow a nonlinear ODE with random coefficient and random forcing UCDAVIS

- Probabilistic Elastic-Plastic: Differential Equation

Previous Works

- \blacktriangleright Linear algebraic or differential equations \rightarrow Analytical solution:
 - Variable Transformation Method (Montgomery and Runger 2003)
 - Cumulant Expansion Method (Gardiner 2004)
- Nonlinear differential equations
 (elaste plastic/viscoelastic viscoelastic)
 - (elasto-plastic/viscoelastic-viscoplastic):
 - Monte Carlo Simulation (Schueller 1997, De Lima et al 2001, Mellah et al. 2000, Griffiths et al. 2005...)
 - Perturbation Method (Anders and Hori 2000, Kleiber and Hien 1992, Matthies et al. 1997)
- Monte Carlo method: accurate, very costly
- Perturbation method: first and second order Taylor series expansion about mean - limited to problems having small C.O.V. and inherits 'closure problem'

- Probabilistic Elastic-Plastic: Differential Equation

Problem Statement

General 3-D elastic-plastic constitutive law:

$$d\sigma_{ij} = \left\{ D_{ijkl}^{el} - \frac{D_{ijmn}^{el} \frac{\partial U}{\partial \sigma_{mn}} \frac{\partial f}{\partial \sigma_{pq}} D_{pqkl}^{el}}{\frac{\partial f}{\partial \sigma_{rs}} D_{rstu}^{el} \frac{\partial U}{\partial \sigma_{tu}} - \frac{\partial f}{\partial q_*} r_*} \right\} d\epsilon_{kl}$$

 \blacktriangleright Focusing on 1-D constitutive Behavior \rightarrow a nonlinear ODE with random coefficient and random forcing

$$\frac{d\sigma(x,t)}{dt} = \beta(\sigma(x,t), D^{el}(x), q(x), r(x); x, t) \frac{d\epsilon(x,t)}{dt}$$
$$= \eta(\sigma, D^{el}, q, r, \epsilon; x, t)$$

UCDAVIS

with an initial condition $\sigma(0) = \sigma_0$

Probabilistic Elastic-Plastic: Differential Equation

Stochastic Continuity (Liouville) Equation

$$\frac{\frac{\partial \rho(\sigma(x,t),t)}{\partial t}}{\frac{\partial t}{\sigma \sigma}} = \frac{1}{\frac{\partial}{\sigma \sigma}} \left[\eta(\sigma(x,t), D^{el}(x), q(x), r(x), \epsilon(x,t)) \right] \rho[\sigma(x,t), t]$$

Initial condition: $\rho(\sigma, \mathbf{0}) = \delta(\sigma - \sigma_0)$

 $ho(\sigma, \mathbf{0}) \rightarrow \text{density of}$ probabilistic solutions in σ space

Probabilistic Elastic-Plastic: Differential Equation

Ensemble Average form of Liouville Equation

 \rightarrow van Kampen's Lemma $\rightarrow < \rho(\sigma, t) >= P(\sigma, t)$, ensemble average of phase density is the probability density;

 \rightarrow Continuity equation written in ensemble average form (eg. cumulant expansion method (Kavvas and Karakas 1996)):

Probabilistic Elastic-Plastic: Differential Equation

Eulerian–Lagrangian FPK Equation

$$\begin{aligned} \frac{\partial P(\sigma(x_{t},t),t)}{\partial t} &= -\frac{\partial}{\partial \sigma} \left[\left\{ \left\langle \eta(\sigma(x_{t},t), D^{el}(x_{t}), q(x_{t}), r(x_{t}), \epsilon(x_{t},t)) \right\rangle \right. \\ + & \int_{0}^{t} d\tau Cov_{0} \left[\frac{\partial \eta(\sigma(x_{t},t), D^{el}(x_{t}), q(x_{t}), r(x_{t}), \epsilon(x_{t},t))}{\partial \sigma}; \\ & \eta(\sigma(x_{t-\tau}, t-\tau), D^{el}(x_{t-\tau}), q(x_{t-\tau}), r(x_{t-\tau}), \epsilon(x_{t-\tau}, t-\tau) \right] \right\} P(\sigma(x_{t}, t), t) \right] \\ + & \left. \frac{\partial^{2}}{\partial \sigma^{2}} \left[\left\{ \int_{0}^{t} d\tau Cov_{0} \left[\eta(\sigma(x_{t}, t), D^{el}(x_{t}), q(x_{t}), r(x_{t}), \epsilon(x_{t}, t)); \\ & \eta(\sigma(x_{t-\tau}, t-\tau), D^{el}(x_{t-\tau}), q(x_{t-\tau}), r(x_{t-\tau}), \epsilon(x_{t-\tau}, t-\tau)) \right] \right\} P(\sigma(x_{t}, t), t) \right] \end{aligned}$$

- Complete probabilistic description of response
- Second-order exact to covariance of time
- Deterministic equation (in probability density space)

Probabilistic Elastic-Plastic: Differential Equation

Solution of FPK Equation

FPK equation → advection-diffusion equation or continuity equation

$$\frac{\partial P(\sigma, t)}{\partial t} = -\frac{\partial}{\partial \sigma} \left[N_{(1)} P(\sigma, t) - \frac{\partial}{\partial \sigma} \left\{ N_{(2)} P(\sigma, t) \right\} \right] = -\frac{\partial \zeta}{\partial \sigma}$$

- Initial condition
 - ▶ Deterministic → Dirac delta function → $P(\sigma, 0) = \delta(\sigma)$

- ▷ Boundary condition: Reflecting BC → conserves probability mass $\zeta(\sigma, t)|_{At Boundaries} = 0$
- ▶ Numerical scheme → *Finite Difference Technique*

- Probabilistic Elastic-Plastic: Differential Equation

Application of FPK equation to Material Models

- FPK equation is applicable to any incremental elastic–plastic material model (only the coefficients N₍₁₎ and N₍₂₎ differ)
- Unique attributes of probabilistic solution
 - Solution in terms of PDF, not a single value of stress
 - Influence of initial condition on the PDF of stress
 - Transition between elastic and elastic-plastic
 - Symmetry and non–symmetry in PDF of stress
 - Differences in mean, mode and deterministic solution of stress
 - Interaction of random soil properties on the PDF of stress

Probabilistic Elastic-Plastic Response

Elastic Response with Random G

General form of elastic constitutive rate equation

$$\frac{d\sigma_{12}}{dt} = 2G\frac{d\epsilon_{12}}{dt}$$
$$= \eta(G, \epsilon_{12}; t)$$

Advection and diffusion coefficients of FPK equation

$$egin{aligned} & \mathcal{N}_{(1)} = 2rac{d\epsilon_{12}}{dt} < G > \ & \mathcal{N}_{(2)} = 4t \left(rac{d\epsilon_{12}}{dt}
ight)^2 Var[G] \end{aligned}$$

- Probabilistic Elasto-Plasticity

Probabilistic Elastic-Plastic Response

Elastic Response with Random G

< G > = 2.5 MPa; Std. Deviation[G] = 0.5 MPa

- Probabilistic Elastic-Plastic Response

Verification – Variable Transformation Method

Probabilistic Elastic-Plastic Response

Drucker-Prager Linear Hardening with Random G

$$\frac{d\sigma_{12}}{dt} = G^{ep} \frac{d\epsilon_{12}}{dt} = \eta(\sigma_{12}, G, K, \alpha, \alpha', \epsilon_{12}; t)$$

Advection and diffusion coefficients of FPK equation

$$N_{(1)} = \frac{d\epsilon_{12}}{dt} \left\langle 2G - \frac{G^2}{G + 9K\alpha^2 + \frac{1}{\sqrt{3}}l_1\alpha'} \right\rangle$$
$$N_{(2)} = t \left(\frac{d\epsilon_{12}}{dt}\right)^2 Var \left[2G - \frac{G^2}{G + 9K\alpha^2 + \frac{1}{\sqrt{3}}l_1\alpha'} \right]$$

- Probabilistic Elasto-Plasticity

- Probabilistic Elastic-Plastic Response

- Approximation of I.C.
- Smooth transition between el. & el.-pl.
- Symmetry in probability distribution

- Probabilistic Elastic-Plastic Response

Verification of D–P E–P Response - Monte Carlo

Probabilistic Elastic-Plastic Response

Modified Cam Clay Constitutive Model

$$\frac{d\sigma_{12}}{dt} = G^{ep} \frac{d\epsilon_{12}}{dt} = \eta(\sigma_{12}, G, M, e_0, p_0, \lambda, \kappa, \epsilon_{12}; t)$$
$$\eta = \left[2G - \frac{\left(36\frac{G^2}{M^4}\right)\sigma_{12}^2}{\frac{(1+e_0)p(2p-p_0)^2}{\kappa} + \left(18\frac{G}{M^4}\right)\sigma_{12}^2 + \frac{1+e_0}{\lambda-\kappa}pp_0(2p-p_0)} \right]$$

Advection and diffusion coefficients of FPK equation

$$N_{(1)}^{(i)} = \left\langle \eta^{(i)}(t) \right\rangle + \int_0^t d\tau cov \left[\frac{\partial \eta^{(i)}(t)}{\partial t}; \eta^{(i)}(t-\tau) \right]$$
$$N_{(2)}^{(i)} = \int_0^t d\tau cov \left[\eta^{(i)}(t); \eta^{(i)}(t-\tau) \right]$$

- Probabilistic Elasto-Plasticity

- Probabilistic Elastic-Plastic Response

- Approximation of I.C.
- Non-symmetry in probability distribution!
- Response at critical state fairly certain but different than deterministic

- Probabilistic Elasto-Plasticity

- Probabilistic Elastic-Plastic Response

- Non-symmetry in probability distribution
- Difference between mean, mode and deterministic responses
- > Divergence at critical state because *M* is uncertain

- Probabilistic Elastic-Plastic Response

Comparison of Low OCR Cam Clay at ϵ = 1.62 %

- Some cases are very uncertain while some are fairly certain
- Either on safe or unsafe side

- Probabilistic Elasto-Plasticity

- Probabilistic Elastic-Plastic Response

- Very uncertain transition between el. & el.-pl.
- Differences between mean, mode, and deterministic responses

UCDAVIS

Divergence at critical state, M is uncertain

- Probabilistic Elastic-Plastic Response

Conclusions

- A new approach to account for uncertainties in elastic–plastic material simulation
- Methodology, which results in a FPK equation, overcomes the drawbacks of *Monte Carlo Method* and *Perturbation Technique*
- Advantage of FPK equation is evident as it transforms the original non–linear stochastic ODE to a linear deterministic PDE
- Developed methodology is capable of providing complete probabilistic description (PDF) of the solution
- Development is general in nature and applicable to any incremental elastic–plastic material model