Piles in Liquefied Soils

Boris Jeremić, Zhao Cheng,
in collaboration with
Mahdi Taiebat, and Yannis Dafalias

University of California, Davis
and
EarthMechanics Inc. Fountain Valley

PEER Annual Meeting January 2007,
Outline

1. Formulation
 - One Slide

2. Examples
 - Seismic Behavior of Horizontal Grounds
 - Seismic Behavior of Sloping Grounds
 - Piles in Liquefying Soils

Boris Jeremić, University of California, Davis
Formulation and the Implementation

- Fully coupled $u - p - U$ formulation and 3D implementation
- Physical, velocity proportional damping from solid–fluid interaction (not using Raleigh damping)
- Accelerations of pore fluid not neglected
- Formulation and implementation verified on a number of available closed form solutions
- Stable implementation for near incompressible (physical) pore fluid
- Dafalias Manzari (2004) material model used
- Single set of elastic–plastic parameters for all stages of loading (self weight, shaking, dissipation)
Level Ground, Dense Sand
Level Ground, Loose Sand

- Seismic Behavior of Horizontal Grounds
- Seismic Behavior of Sloping Grounds
- Piles in Liquefying Soils

Boris Jeremić, University of California, Davis
Modeling and Simulations of Liquefied Soils
Sloping Ground, Dense Sand

Formulation
Examples
Summary
Seismic Behavior of Horizontal Grounds
Seismic Behavior of Sloping Grounds
Piles in Liquefying Soils

Boris Jeremić, University of California, Davis
Modeling and Simulations of Liquefied Soils
Sloping Ground, Loose Sand
Bridge Pier–Pile Model

Formulation

Examples

Summary

Seismic Behavior of Horizontal Grounds

Seismic Behavior of Sloping Grounds

Piles in Liquefying Soils

Boris Jeremić, University of California, Davis

Modeling and Simulations of Liquefied Soils
Bridge Pier in Level Ground

Case I

Case II

Case III
Bridge Pier in Sloping Ground

Case IV

Case V

Case VI

Boris Jeremić, University of California, Davis

Modeling and Simulations of Liquefied Soils
Verification: the process of determining that a model implementation accurately represents the developer’s conceptual description and specification. Mathematics issue. Verification provides evidence that the model is solved correctly.

Validation: The process of determining the degree to which a model is accurate representation of the real world from the perspective of the intended uses of the model. Physics issue. Validation provides evidence that the correct model is solved.

Prediction: use of computational model to foretell the state of a physical system under consideration under conditions for which the computational model has not been validated.