Јеремић

Рачунарска платформа

Студија интеракције ЗТК ососо осососо осо Закључак

Паралелна рачунарска метода прорачуна интеракције земљотреса, тла и конструкције

Борис Јеремић

Department of Civil and Environmental Engineering University of California, Davis, U.S.A.

Computational Geomechanics Group UCDAVE

Јеремић

Рачунарска платформа

Студија интеракције ЗТК ооооо оооооо ооо Закључак

Интеракција земљотреса, тла и конструкције (ЗТК)

- Дипломски пре скоро 18 година
- релативно мали модел
- линеарно еластичан материјал
- аксисиметрични елементи са развојем померања у тригонометријске редове
- упрошћено земљтресно оптерећење
- врло корисна анализа интеракције земљотреса, тла и конструкције

Од тада ...

- Еласто-пластичност (мале и велике деформације)
- Динамика МКЕ модела
- Технологија коначних елемената (солиди)
- Теорија вероватноћа и нелинеарна механика
- Графичко пре и пост процесирање модела МКЕ
- Рачунарски системи за прорачун (програми и компјутери)

ЗТК хипотеза

- NEHRP-94 seismic code states that: "These [seismic] forces therefore can be evaluated conservatively without the adjustments recommended in Sec. 2.5 [i.e. for SS interaction effects]".
- флексибилност темеља и тла мења динамичке карактеристике система тло–конструкција (ТК)
- Смањење крутости ТК система (еласто-пластичност) мења те динамичке карактеристике још више
- Што се земљотрес појачава, то се својствени периоди система ТК продужавају
- Доминантни период земљотреса и система ТК може се поклопити

Јеремић

Јеремић

Еволуција система ЗТК

Енергетска равнотежа

- Равнотежа енергије: унос енергије (земљотрес) и потрошња енергије (пластичност, радијација таласа, интеракција флуида и солида) контролише судбину система ЗТК
- ► Ако је потрошња енергије већа од уноса ⇒ оштећења ће вероватно бити мала
- ► Ако је потрошња енергије мања од уноса ⇒ оштећења ће вероватно бити велика (резонанција)

Јеремић

Рачунарска платформа

Студија интеракције ЗТК ососо ососо осо Закључак

Еволуција система ЗТК

Моделовање система ЗТК

- Понашање конструкције је котролисано динамичким карактеристикама три компоненте:
 - Земљотрес
 - ▶ Тло
 - Конструкција
- Анализа интеракције система ЗТК користећи веродостојне модела
- Прецизне анализе система ЗТК захтевају развој
 - бољих модела система ЗТК
 - бољих нумеричких метода
 - брзих, приступачних рачунара

Рачунарска платформа •ооооооооо •ооо Студија интеракције ЗТК ососо ососо осо Закључак

Ефикасни програмски системи

Паралелни, еласто-пластични коначни елементи

- Тренутно стање паралелне МКЕ
 - Развијено за еластичне моделе
 - неразвијено за еласто-пластичне моделе
 - Развијено за хомогене, раздвојене паралелне рачунаре
 - Неразвијено за нехомогене, раздвојене паралелне рачунаре
- Потребно је развити динамичко балансирање оптерећења чворова параленог рачунара за
 - разне врсте елемената
 - разне врсте материјалних модела
 - вишеструке генерације (брзине) чворова паралелног рачунара
 - рачунарске мреже разних брзина

Јеремић

Computational Geomechanics Group UCDAVIS

Јеремић

Рачунарска платформа

Студија интеракције ЗТК ооооо оооооо ооо Закључак

Ефикасни програмски системи

Метода пластичне декомпозиције домена (ПДД)

- Вишеструки циљеви методе: минимизација
 - комуникација међу процесорима (чворовима),
 - количине података који се прераспоређују и
 - направити уравнотежене под-домене
- Паралелно уравнотежавање рачунарског оптерећења кошта *T_{overhead}* := *T_{comm}* + *T_{regen}*
 - *Т_{сотт}* је додати трошак (време) комуникације и зависи од врсте рачунарске мреже
 - Т_{regen} је додатни трошак регенерације модела после сваке прерасподеле и зависи од врсте модела

Ефикасни програмски системи

ПДД: модел

- ► Рачунарско оптерећење сваког процесора $T_j := \sum_{i=1}^{nel} ElemCompLoad[i]$; j = 1, ..., nCPU
- Циљ је оптимизовати најспорији процесор $T_{max} := max(T_j)$; j = 1, ..., nCPU
- ► Тотално рачунарско време (нереално) $T_{sum} := \sum (T_j)$
- Најоптималније рачунарско време (идеално уравнотежење)

 $T_{best} := T_{sum}/n\dot{CPU}, \Rightarrow T_j \equiv T_{best} \forall j = 1, ..., nCPU$

- ▶ Највеће убрзање прорачуна $T_{gain} := T_{max} T_{best}$
- Динамичка прерасподела домена се врши акко
 $T_{gain} \ge T_{overhead} = T_{comm} + T_{regen}$

Јеремић

Computational Geomechanics Group UCDAVIS

Студија интеракције ЗТК

Закључак

Ефикасни програмски системи

ПДД Имплементација

- ParMETIS нумеричке библиотеке за операције на графовима
- PETSc солвери
- UCD побољшана верзија OpenSees модела анализе
- UCD CompGeoMech нумеричке библиотеке (елементи, материјални модели, алгоритми...)
- Ефикасно убрзање за велики број процесора (тестирано до 1024)
- Оптимизација ПДД алгоритма и прорачуни рађени на локалном рачунару (UCD) GeoWulf и на рачунарима LongHorn (TACC) и DataStar (SDSC)

Јеремић

Рачунарска платформа

Студија интеракције ЗТК ососо осососо осо

Закључак

Ефикасни програмски системи

ПДД пример

- МКЕ модел интеракције тла и темеља (4,938 елемената, 17,604 непознатих)
- Еласто–пластично тло
- Мала промена еласто-пластичне зоне

- Минимизирање прерасподеле података
- Дозвољена већа непрецизност прерасподеле елемената (5 %)

Студија интеракције ЗТК ососо ососо осо Закључак

Ефикасни програмски системи

2 процесора, ПДД расподела-прерасподела

Јеремић

Паралелна анализа интеракције ЗТК

Студија интеракције ЗТК ососо ососо осо Закључак

Ефикасни програмски системи

4 процесора, ПДД расподела-прерасподела

Јеремић

Паралелна анализа интеракције ЗТК

Рачунарска платформа

Студија интеракције ЗТК ососо ососо осо Закључак

Ефикасни програмски системи

8 процесора, ПДД расподела-прерасподела

Јеремић

Паралелна анализа интеракције ЗТК

Студија интеракције ЗТК ососос осососо осо

Закључак

Ефикасни програмски системи

Јеремић

Паралелна анализа интеракције ЗТК

Студија интеракције ЗТК ооооо оооооо ооо Закључак

Ефикасни програмски системи

Јеремић

Паралелна анализа интеракције ЗТК

Студија интеракције ЗТК ососо осососо осо Закључак

Паралелни Рачунари

Паралени рачунар GeoWulf

- Рачунар са чворовима са расподељеном меморијом
- Више генерација чворних процесора
- Врло ефикасан (цена/брзина)
- Иста рачунарска архитектура као велики паралелни рачунари (SDSC, TACC, EarthSimulator...)
- Развијен локално, стално приступачан

Рачунарска платформа •••• Студија интеракције ЗТК ососо ососо осо Закључак

Паралелни Рачунари

GeoWulf: рачунарска архитектура

Јеремић

Computational Geomechanics Group

Рачунарска платформа

Студија интеракције ЗТК

Закључак

Паралелни Рачунари

GeoWulf: изглед

Јеремић Паралелна анализа интеракције ЗТК

Рачунарска платформа 00000 Студија интеракције ЗТК ососо осососо осо Закључак

Паралелни Рачунари

GeoWulf: конструкција

Јеремић Паралелна анализа интеракције ЗТК

Рачунарска платформа

Студија интеракције ЗТК •••••• •••••• Закључак

3Д модели високе прецизности

Детаљан 3Д модел (један од)

Јеремић Паралелна анализа интеракције ЗТК

3Д модели високе прецизности

Делови модела

- Тло: еласто-пластично (Drucker-Prager, ојачање Armstrong-Frederick)
- Конструкција: линеарни и нелинеарни гредни елементи (влакна)
- Шипови: Нелинеарни гредни елементи (влакна)
- Две врсте тла, круто (сув песак) и меко (меке глине)
- ▶ Унос земљотреса у MKE модел → Domain Reduction Method

Студија интеракције ЗТК ००•०० ००००० ००० Закључак

3Д модели високе прецизности

Детаљи моделовања

- "Изградња" модела
- Деконволуција мереног земљотреса на површини до стене у дубини
- Нема вештачког пригушења! (само пластичност и радијација, минимално нумеричко пригушење)
- ▶ Величине елемента ⇒ филтрирање фреквенција

elem. #	elem. size	f _{cutoff}	min. G ^{ep} /Gmax	γ
12K	1.00 m	10 Hz	1.0	<0.5 %
15K	0.90 m	>3 Hz	0.08	<1.0 %
150K	0.30 m	10 Hz	0.08	<1.0 %
500K	0.15 m	10 Hz	0.02	<5.0 %

Јеремић

Паралелна анализа интеракције ЗТК

Computational Geomechanics Group UCDAVIS

Студија интеракције ЗТК ооооо оооооо

Закључак

3Д модели високе прецизности

Northridge и Kocaeli земљотреси

Јеремић

Computational Geomechanics Group

Студија интеракције ЗТК ооооо оооо Закључак

ЗД модели високе прецизности

Резултати анализа

Јеремић

Паралелна анализа интеракције ЗТК

Студија интеракције ЗТК ••••••• ••••• Закључак

Понашање при земљотресима са кратким периодом

Northridge земљотрес

Јеремић

Computational Geomechanics Group

Студија интеракције ЗТК •••••• Закључак

Понашање при земљотресима са кратким периодом

3. кратки период: л. рам, пом., конст. и тла

Јеремић

Паралелна анализа интеракције ЗТК

Студија интеракције ЗТК

Закључак

Понашање при земљотресима са кратким периодом

Јеремић

Паралелна анализа интеракције ЗТК

Студија интеракције ЗТК

Закључак

Понашање при земљотресима са кратким периодом

3. кратки период: л. рам, моменти савијања

Јеремић

Паралелна анализа интеракције ЗТК

Студија интеракције ЗТК

Закључак

Понашање при земљотресима са кратким периодом

3. кратки период: л. рам, моменти, детаљ

Јеремић

Computational Geomechanics Group

Студија интеракције ЗТК

Закључак

Понашање при земљотресима са кратким периодом

3. кратки период: померања без и са конст.

Јеремић

Computational Geomechanics Group

Студија интеракције ЗТК

Закључак

Понашање при земљотресима са дугим периодом

Kocaeli земљотрес

Јеремић Паралелна анализа интеракције ЗТК

Computational Geomechanics Group UCDAVIS

Студија интеракције ЗТК

Закључак

Понашање при земљотресима са дугим периодом

3. дуги период: л. рам, моменти савијања

Јеремић

Computational Geomechanics Group

Студија интеракције ЗТК

Закључак

Понашање при земљотресима са дугим периодом

3. дуги период: л. рам, пом., конст. и тло

Јеремић

Паралелна анализа интеракције ЗТК

Јеремић

Закључак

- Врло прецизни МКЕ модели за интеракцију земљотреса, тла и конструкције
- Развијена нова рачунарска технологија (методе, програми и рачунари)
- Динамичка интеракција три компоненте: земљотреса, тла и конструкције контролише понашање система ТК
- Програм(и), модели и остали детаљи се могу наћи на сокоћалу http://sokocalo.engr.ucdavis.edu/~jeremic