Jeremić

ESS Case Study

The Plastic Domain Decomposition for Soil Foundation Structure Interaction Computations

Boris Jeremić and Guanzhou Jie

Department of Civil and Environmental Engineering University of California, Davis, U.S.A.

Computational Geomechanics Group

ESS Case Study

Outline

Hypothesis ESS System Evolution

Computational Platform

Software Component Hardware Component

ESS Case Study

High Fidelity, 3D Models Behavior for Short Period Motions Behavior in Long Period Motions

Summary

Jeremić

Computational Geomechanics Group

ESS System Evolution

ESS Hypothesis

- NEHRP-94 seismic code states that: "These [seismic] forces therefore can be evaluated conservatively without the adjustments recommended in Sec. 2.5 [i.e. for SS interaction effects]".
- Flexibility (elastic) of foundations and soils modifies dynamic properties of the SS system (Gazetas and Mylonakis)
- Reduction in stiffness (elasto-plasticity) of the SS system modifies those dynamic properties even more so
- Earthquake intensity increase, SS system period is elongated
- Earthquake period and SS period might (will) coincide

Jeremić

Computational Platform

ESS Case Study

ESS System Evolution

ESS System Energy Balance

- Energy balance: input (seismic) and dissipated (inelasticity, radiation, coupling) will control the fate of ESS system
- ► If energy dissipation > input ⇒ probably small damage
- ► If energy dissipation < input ⇒ probably large damage

ESS System Evolution

Modeling ESS System

- Structural response is a function of a tightly coupled triad of dynamic characteristic of
 - Earthquake
 - Soil
 - Structure
- Use detailed numerical models to analyze prototype models
- Detailed numerical models require advancement in
 - Modeling techniques
 - Computational (software) methodology
 - Computer hardware (accessible parallel computers)

Jeremić

Software Component

Parallel Elastic–Plastic Finite Element Computations

- Current Parallel FEM are
 - Well developed for elastic FEM
 - Undeveloped for elastic–plastic FEM
 - Well developed for homogeneous distributed memory parallel (DMP) computers,
 - Undeveloped for multiple performance (multi–generation) DMPs
- Need: dynamic computational load balancing for
 - multiple element types,
 - multiple material models
 - multiple compute node performances
 - multiple network performances

Software Component

Plastic Domain Decomposition (PDD) Method

- Multi-objective optimization problem (minimize both the inter-processor communications, the data redistribution costs and create balanced partitions)
- computational load balancing adds overhead Toverhead := T_{comm} + T_{regen}
 - *T_{comm}* data communication load depending on network conditions.
 - *T_{regen}* model regeneration for new partitioning, application (model) dependent

Software Component

PDD Optimization Model

- Computional load among CPUs $T_j := \sum_{i=1}^{nel} ElemCompLoad[i], j = 1, ..., nCPU$
- ► Goal: minimize maximum compute time (slowest CPU) T_{max} := max(T_j) j = 1,..., nCPU
- ► Total compute time (not wall clock time) $T_{sum} := sum(T_j)$
- ► Best execution time (perfect load balancing) $T_{best} := T_{sum}/nCPU$, $\Rightarrow T_j \equiv T_{best}$ for each j = 1, ..., nCPU
- Best performance gain $T_{gain} := T_{max} T_{best}$
- ► Computational load balancing is beneficial iff T_{gain} ≥ T_{overhead} = T_{comm} + T_{regen}

Software Component

PDD Implementation

- ParMETIS dynamic graph partitioning libraries (Karypis et al.)
- PETSc solvers (Balay et al.)
- UCD upgraded OpenSees analysis model (Jie and Jeremić, McKenna)
- UCD CompGeoMech libraries (elements, material models, algorithms,...)
- Scalable to a large number of CPUs (2–1024 or more)
- Performance tuning and production runs on my cluster GeoWulf (UCD), LongHorn (TACC) and DataStar (SDSC)

Jeremić

Jeremić

ESS Case Study

Simple PDD Example

- FEM model for soil foundation Interaction (4,938 Elements, 17,604 DOFs)
- Elastic—plastic soil
- Mild evolution of elastic–plastic zone
- Minimizing data redistribution
- Allowing higher tolerance for edge-cut
- Imbalance tolerance 5 %

Computational Geomechanics Group

Summary

Computational Platform

ESS Case Study

Software Component

2 CPU PDD Partitioning–Repartitioning Example

Jeremić

Computational Geomechanics Group

Computational Platform

ESS Case Study

Software Component

4 CPU PDD Partitioning–Repartitioning Example

Jeremić

Computational Geomechanics Group

Computational Platform

ESS Case Study

Software Component

8 CPU PDD Partitioning–Repartitioning Example

Jeremić

Computational Geomechanics Group UCDAVIS

Computational Platform

ESS Case Study

Summary

Software Component

Speedup Overview

Jeremić

Computational Geomechanics Group UCDAVIS

Computational Platform

ESS Case Study

Summary

Software Component

Speedup Overview

Jeremić

Computational Geomechanics Group

Hardware Component

Parallel Supercomputer GeoWulf

- Distributed memory parallel computer
- Multiple generation compute nodes and networks
- Very cost effective!
- Same architecture as large parallel supercomputers (SDSC, TACC, EarthSimulator...)
- Local design, construction, available at all times!

Computational Platform

ESS Case Study

Summary

Hardware Component

GeoWulf: Parallel Supercomputer Architecture

Jeremić

Computational Geomechanics Group UCDAVIS

Computational Platform

ESS Case Study

Summary

Hardware Component

GeoWulf: Demistifying Parallel Supercomputing

Jeremić

Computational Geomechanics Group UCDAVIS

Computational Platform

ESS Case Study

Summary

Hardware Component

GeoWulf: Local Development

Jeremić

Computational Geomechanics Group

ESS Case Study •••••• ••••••

High Fidelity, 3D Models

Detailed 3D FEM Model (one of)

Jeremić

Computational Geomechanics Group

Jeremić

High Fidelity, 3D Models

Model Components

- Soils: elastic-plastic solids (yield land potential surface Drucker-Prager, kinematic hardening Armstrong-Frederick) (UCD: Jie and Jeremić)
- Structure non–linear beam–column elements (fiber element) (UCB: Fenves, UW: Eberhardt)
- Piles: non–linear beam–column elements (fiber element) (UCD: Jie and Jeremić)
- Two types of soil: stiff soil (UT, UCD), soft soil (Bay Mud)
- Use of the Domain Reduction Method (DRM) (Bielak et al.) for seismic input into FEM model

High Fidelity, 3D Models

Modeling Issues

- Construction process
- Deconvolution of given surface ground motions
- ► No artificial damping (only mat. dissipation, radiation)
- Element size issues (filtering of frequencies)

elem. #	elem. size	f _{cutoff}	min. G ^{ep} /Gmax	γ
12K	1.00 m	10 Hz	1.0	<0.5 %
15K	0.90 m	>3 Hz	0.08	<1.0 %
150K	0.30 m	10 Hz	0.08	<1.0 %
500K	0.15 m	10 Hz	0.02	<5.0 %

Jeremić

Computational Geomechanics Group UCDAVIS

ESS Case Study

High Fidelity, 3D Models

Northridge and Kocaeli Input Motions

Jeremić

Computational Geomechanics Group UCDAVIS

Computational Platform

ESS Case Study

High Fidelity, 3D Models

Simulation Results

Jeremić

Computational Geomechanics Group

Jeremić

Computational Platform

ESS Case Study

Behavior for Short Period Motions

Northridge Input Motions

Computational Geomechanics Group

ESS Case Study ○○○○○ ○●○○○○

Behavior for Short Period Motions

Short Period E.: Left Bent, Structure and Soil, Disp.

Jeremić

Computational Geomechanics Group UCDAVE

ESS Case Study

Behavior for Short Period Motions

Short Period E.: Left Bent, Structure and Soil, Acc.Sp.

Jeremić

Computational Geomechanics Group UCDAVE

ESS Case Study

Behavior for Short Period Motions

Short Period E.: Left Bent, Structure and Soil, M.

Jeremić

Computational Geomechanics Group UCDAVIS

Computational Platform

ESS Case Study

Behavior for Short Period Motions

Short Period E.: Left Bent, Bending Moments

Jeremić

Computational Geomechanics Group UCDAVIS

Computational Platform

ESS Case Study

Behavior for Short Period Motions

Short Period E.: Left Bent, Free Field vs Real Disp.

Jeremić

Computational Geomechanics Group UCDAVIS

ESS Case Study

Behavior in Long Period Motions

Kocaeli Input Motions

Jeremić

Computational Geomechanics Group

ESS Case Study

Behavior in Long Period Motions

Long Period E.: Left Bent, Bending Moments.

Jeremić

Computational Geomechanics Group UCDAVIS

ESS Case Study

Behavior in Long Period Motions

Long Period E.: Left Bent, Structure and Soil, Disp.

Jeremić

Computational Geomechanics Group UCDAVIS

- High fidelity numerical models of ESS systems
- High performance computational tools (software and hardware) developed and available
- Matching Triad: Earthquake, Soil and Structure (ESS) interaction determines possible benefits or detriments
- Program sources and tools available in public domain (GPL) at Author's web site