Boris Jeremić

with contributions by Kallol Sett and Levent Kavvas

Funding sources NSF, Caltrans, CEE@UCD

Department of Civil and Environmental Engineering University of California, Davis

USC Seminar Series, December 2007

Motivation

UCDAVIS

Outline

Motivation

Motivation

Stochastic Systems: Historical Perspectives Uncertainties in Material

Probabilistic Elasto-Plasticity

PFP Formulations

Probabilistic Elastic-Plastic Response

Stochastic Elastic-Plastic Finite Element Method

SEPERM Formulations

SEPFEM Verification Example

An Application

Seismic Wave Propagation Through Uncertain Soils

Summary

Outline

Motivation

•0000

Motivation

Stochastic Systems: Historical Perspectives

Uncertainties in Material

Probabilistic Elasto-Plasticity

PEP Formulations

Probabilistic Elastic—Plastic Response

Stochastic Elastic-Plastic Finite Element Method

SEPFEM Formulations

SEPFEM Verification Example

An Application

Seismic Wave Propagation Through Uncertain Soils

Summary

Uncertain Elasto-Plasticity

UCDAVIS

History

Motivation

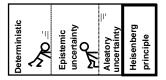
00000

- Probabilistic fish counting
- Williams' DEM simulations, differential displacement vortexes
- SFEM round table
- Kavvas' probabilistic hydrology

00000

Types of Uncertainties

- Epistemic uncertainty due to lack of knowledge
 - Can be reduced by collecting more data
 - Mathematical tools are not well developed
 - trade-off with aleatory uncertainty
- Aleatory uncertainty inherent variation of physical system
 - Can not be reduced
 - Has highly developed mathematical tools



Ergodicity

Motivation

- Exchange ensemble averages for time averages
- Is soil elasto-plasticity ergodic?
 - Can soil elastic–plastic statistical properties be obtained by temporal averaging?
 - Will soil elastic-plastic statistical properties "renew" at each occurrence?
 - Are soil elastic–plastic statistical properties statistically independent?
- Claim in literature that structural nonlinear behavior is non-ergodic while earthquake characteristics are (?!)
- However, earthquake characteristics is representing mechanics (fault slip) on a different scale...

Jeremić

Computational Geomechanics Group

00000

Historical Overview

- ▶ Brownian motion, Langevin equation → PDF governed by simple diffusion Eq. (Einstein 1905)
- With external forces → Fokker-Planck-Kolmogorov (FPK) for the PDF (Kolmogorov 1941)
- Approach for random forcing → relationship between the autocorrelation function and spectral density function (Wiener 1930)
- Approach for random coefficient → Functional integration approach (Hopf 1952), Averaged equation approach (Bharrucha-Reid 1968), Numerical approaches, Monte Carlo method

Outline

Motivation

00000

Motivation

Uncertainties in Material

An Application

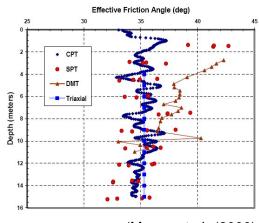
Seismic Wave Propagation Through Uncertain Soils

Summary

00000

Material Behavior Inherently Uncertainties

- Spatial variability
- Point-wise uncertainty, testing error, transformation error



(Mayne et al. (2000)

Soil Uncertainties and Quantification

- Natural variability of soil deposit (Fenton 1999)
 - Function of soil formation process
- ► Testing error (Stokoe et al. 2004)
 - Imperfection of instruments
 - Error in methods to register quantities
- Transformation error (Phoon and Kulhawy 1999)
 - ► Correlation by empirical data fitting (e.g. CPT data → friction angle etc.)

00000

Probabilistic material (Soil Site) Characterization

- Ideal: complete probabilistic site characterization
- ▶ Large (physically large but not statistically) amount of data
 - Site specific mean and coefficient of variation (COV)
 - Covariance structure from similar sites (e.g. Fenton 1999)
- ► Moderate amount of data → Bayesian updating (e.g. Phoon and Kulhawy 1999, Baecher and Christian 2003)
- Minimal data: general guidelines for typical sites and test methods (Phoon and Kulhawy (1999))
 - COVs and covariance structures of inherent variability
 - COVs of testing errors and transformation uncertainties.

 $Ku = \phi$

Motivation

Recent State-of-the-Art

- Governing equation
 - ▶ Dynamic problems $\rightarrow M\ddot{u} + C\ddot{u} + Ku = \phi$
 - ▶ Static problems →
- Existing solution methods
 - Random r.h.s (external force random)
 - ► FPK equation approach
 - Use of fragility curves with deterministic FEM (DFEM)
 - Random I.h.s (material properties random)
 - Monte Carlo approach with DFEM → CPU expensive
 - ▶ Perturbation method → a linearized expansion! Error increases as a function of COV
 - lacktriangle Spectral method ightarrow developed for elastic materials so far
- New developments for elasto-plastic applications

Jeremić

Computational Geomechanics Group

Outline

Uncertainties in Material

Probabilistic Elasto—Plasticity

PFP Formulations

An Application

Seismic Wave Propagation Through Uncertain Soils

Summary

Uncertain Elasto-Plasticity

Uncertainty Propagation through Constitutive Eq.

▶ Incremental el–pl constitutive equation $\frac{d\sigma_{ij}}{dt} = D_{ijkl} \frac{d\epsilon_{kl}}{dt}$

$$D_{ijkl} = \begin{cases} D_{ijkl}^{el} & \text{for elastic} \\ \\ D_{ijkl}^{el} - \frac{D_{ijmn}^{el} m_{mn} n_{pq} D_{pqkl}^{el}}{n_{rs} D_{rstu}^{el} m_{tu} - \xi_* r_*} & \text{for elastic-plastic} \end{cases}$$

Previous Work

- ▶ Linear algebraic or differential equations → Analytical solution:
 - Variable Transf. Method (Montgomery and Runger 2003)
 - Cumulant Expansion Method (Gardiner 2004)
- Nonlinear differential equations (elasto-plastic/viscoelastic-viscoplastic):
 - Monte Carlo Simulation (Schueller 1997, De Lima et al 2001, Mellah et al. 2000, Griffiths et al. 2005...)
 - \rightarrow accurate, very costly
 - Perturbation Method (Anders and Hori 2000, Kleiber and Hien 1992, Matthies et al. 1997)
 - \rightarrow first and second order Taylor series expansion about mean limited to problems with small C.O.V. and inherits "closure problem"

Problem Statement

Incremental 3D elastic-plastic stress—strain:

$$\frac{d\sigma_{ij}}{dt} = \left\{ D_{ijkl}^{el} - \frac{D_{ijmn}^{el} m_{mn} n_{pq} D_{pqkl}^{el}}{n_{rs} D_{rstu}^{el} m_{tu} - \xi_* r_*} \right\} \frac{d\epsilon_{kl}}{dt}$$

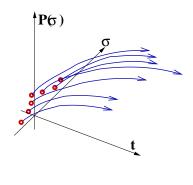
▶ Focus on 1D \rightarrow a nonlinear ODE with random coefficient (material) and random forcing (ϵ)

$$\frac{d\sigma(x,t)}{dt} = \beta(\sigma(x,t), D^{el}(x), q(x), r(x); x, t) \frac{d\epsilon(x,t)}{dt}
= \eta(\sigma, D^{el}, q, r, \epsilon; x, t)$$

with initial condition $\sigma(0) = \sigma_0$

Evolution of the Density $\rho(\sigma, t)$

- From each initial point in σ-space a trajectory starts out describing the corresponding solution of the stochastic process
- Movement of a cloud of initial points described by density $\rho(\sigma,0)$ in σ -space, is governed by the constitutive equation,



UCDAVIS

Motivation

Stochastic Continuity (Liouville) Equation

▶ phase density ρ of $\sigma(x, t)$ varies in time according to a continuity Liouville equation (Kubo 1963):

$$\frac{\partial \rho(\sigma(x,t),t)}{\partial t} = -\frac{\partial \eta(\sigma(x,t), D^{el}(x), q(x), r(x), \epsilon(x,t))}{\partial \sigma} \rho[\sigma(x,t),t]$$

• with initial conditions $\rho(\sigma, 0) = \delta(\sigma - \sigma_0)$

Ensemble Average form of Liouville Equation

Continuity equation written in ensemble average form (eg. cumulant expansion method (Kavvas and Karakas 1996)):

$$\begin{split} &\frac{\partial \left\langle \rho(\sigma(x_{t},t),t)\right\rangle}{\partial t} = -\frac{\partial}{\partial \sigma} \left[\left\{ \left\langle \eta(\sigma(x_{t},t),D^{el}(x_{t}),q(x_{t}),r(x_{t}),\epsilon(x_{t},t)) \right\rangle \right. \\ &+ \left. \int_{0}^{t} d\tau Cov_{0} \left[\frac{\partial \eta(\sigma(x_{t},t),D^{el}(x_{t}),q(x_{t}),r(x_{t}),\epsilon(x_{t},t))}{\partial \sigma}; \right. \\ &\left. \eta(\sigma(x_{t-\tau},t-\tau),D^{el}(x_{t-\tau}),q(x_{t-\tau}),r(x_{t-\tau}),\epsilon(x_{t-\tau},t-\tau) \right] \right\} \left\langle \rho(\sigma(x_{t},t),t) \right\rangle \right] \\ &+ \left. \frac{\partial^{2}}{\partial \sigma^{2}} \left[\left\{ \int_{0}^{t} d\tau Cov_{0} \left[\eta(\sigma(x_{t},t),D^{el}(x_{t}),q(x_{t}),r(x_{t}),\epsilon(x_{t},t)); \right. \\ &\left. \eta(\sigma(x_{t-\tau},t-\tau),D^{el}(x_{t-\tau}),q(x_{t-\tau}),r(x_{t-\tau}),\epsilon(x_{t-\tau},t-\tau)) \right] \right\} \left\langle \rho(\sigma(x_{t},t),t) \right\rangle \right] \end{split}$$

UCDAVIS

Motivation

Eulerian-Lagrangian FPK Equation

van Kampen's Lemma (van Kampen 1976) \to $< \rho(\sigma, t) >= P(\sigma, t)$, ensemble average of phase density is the probability density;

$$\frac{\partial P(\sigma(x_{t},t),t)}{\partial t} = -\frac{\partial}{\partial \sigma} \left[\left\{ \left\langle \eta(\sigma(x_{t},t),D^{el}(x_{t}),q(x_{t}),r(x_{t}),\epsilon(x_{t},t)) \right\rangle \right. \\
+ \left. \int_{0}^{t} d\tau Cov_{0} \left[\frac{\partial \eta(\sigma(x_{t},t),D^{el}(x_{t}),q(x_{t}),r(x_{t}),\epsilon(x_{t},t))}{\partial \sigma}; \right. \\
\left. \eta(\sigma(x_{t-\tau},t-\tau),D^{el}(x_{t-\tau}),q(x_{t-\tau}),r(x_{t-\tau}),\epsilon(x_{t-\tau},t-\tau) \right] \right\} P(\sigma(x_{t},t),t) \right] \\
+ \left. \frac{\partial^{2}}{\partial \sigma^{2}} \left[\left\{ \int_{0}^{t} d\tau Cov_{0} \left[\eta(\sigma(x_{t},t),D^{el}(x_{t}),q(x_{t}),r(x_{t}),\epsilon(x_{t},t); \right. \\
\left. \eta(\sigma(x_{t-\tau},t-\tau),D^{el}(x_{t-\tau}),q(x_{t-\tau}),r(x_{t-\tau}),\epsilon(x_{t-\tau},t-\tau)) \right] \right\} P(\sigma(x_{t},t),t) \right]$$

Eulerian-Lagrangian Format

- ▶ Real-space location (Lagrangian) x_t is known but pull-back to Eulerian location $x_{t-\tau}$ is unknown
- ▶ Can be related using strain rate $\dot{\epsilon}$ (= $d\epsilon/dt$)

$$d\epsilon = \dot{\epsilon}\tau = \frac{x_t - x_{t-\tau}}{x_t};$$
 or, $x_{t-\tau} = (1 - \dot{\epsilon}\tau)x_t$

E-L FPK Equation

Advection-diffusion equation

$$\frac{\partial P(\sigma, t)}{\partial t} = -\frac{\partial}{\partial \sigma} \left[N_{(1)} P(\sigma, t) - \frac{\partial}{\partial \sigma} \left\{ N_{(2)} P(\sigma, t) \right\} \right]$$

- Complete probabilistic description of response
- Solution PDF is second-order exact to covariance of time (exact mean and variance)
- It is deterministic equation in probability density space
- ▶ It is linear PDE in probability density space → Simplifies the numerical solution process

B. Jeremić, K. Sett, and M. L. Kavvas, "Probabilistic Elasto-Plasticity: Formulation in 1-D", *Acta Geotechnica*, Vol. 2, No. 3, 2007, In press (published online in the *Online First* section)

Template Solution of FPK Equation

► FPK diffusion-advection equation is applicable to any material model → only the coefficients N₍₁₎ and N₍₂₎ are different for different material models

$$\frac{\partial P(\sigma, t)}{\partial t} = -\frac{\partial}{\partial \sigma} \left[N_{(1)} P(\sigma, t) - \frac{\partial}{\partial \sigma} \left\{ N_{(2)} P(\sigma, t) \right\} \right] = -\frac{\partial \zeta}{\partial \sigma}$$

- Initial condition
 - ▶ Deterministic → Dirac delta function → $P(\sigma, 0) = \delta(\sigma)$
 - ▶ Random → Any given distribution
- ▶ Boundary condition: Reflecting BC \rightarrow conserves probability mass $\zeta(\sigma, t)|_{At\ Boundaries} = 0$
- ► Finite Differences used for solution (among many others)

K. Sett, B. Jeremić and M.L. Kavvas, "The Role of Nonlinear Hardening/Softening in Probabilistic Elasto-Plasticity", International Journal for Numerical and Analytical Methods in Geomechanics, Vol. 31, No. 7, pp. 953-975, 2007

Application of FPK equation to Material Models

- ► FPK equation is applicable to any incremental elastic—plastic material model
- Solution in terms of PDF, not a single value of stress
- Influence of initial condition on the PDF of stress
- Mean stress yielding or
- Probabilistic yielding

Outline

Motivation

Motivation

Stochastic Systems: Historical Perspectives Uncertainties in Material

Probabilistic Elasto-Plasticity

PEP Formulations

Probabilistic Elastic-Plastic Response

Stochastic Elastic-Plastic Finite Element Method SEPFEM Formulations

SEPFEM Verification Example

An Application

Seismic Wave Propagation Through Uncertain Soils

Summary

Elastic Response with Random G

► General form of elastic constitutive rate equation

$$\frac{d\sigma_{12}}{dt} = 2G\frac{d\epsilon_{12}}{dt}$$
$$= \eta(G, \epsilon_{12}; t)$$

Advection and diffusion coefficients of FPK equation

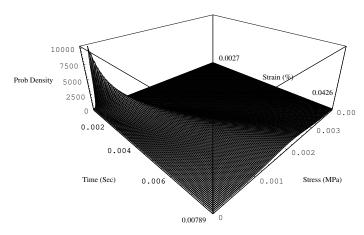
$$N_{(1)}=2\frac{d\epsilon_{12}}{dt}< G>$$

$$N_{(2)} = 4t \left(\frac{d\epsilon_{12}}{dt}\right)^2 Var[G]$$

Jeremić

Computational Geomechanics Group

Elastic Response with Random G

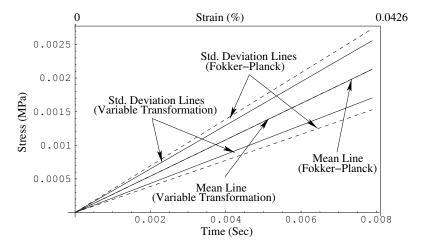


 $\langle G \rangle$ = 2.5 MPa; Std. Deviation[G] = 0.5 MPa

Jeremić

Computational Geomechanics Group

Verification – Variable Transformation Method



Drucker-Prager Linear Hardening with Random G

$$\frac{d\sigma_{12}}{dt} = G^{ep}\frac{d\epsilon_{12}}{dt} = \eta(\sigma_{12}, G, K, \alpha, \alpha', \epsilon_{12}; t)$$

Advection and diffusion coefficients of FPK equation

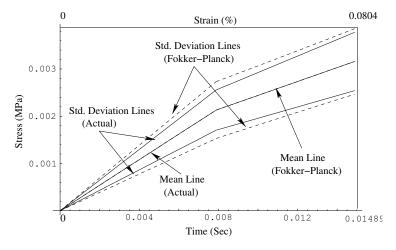
$$N_{(1)} = rac{d\epsilon_{12}}{dt} \left\langle 2G - rac{G^2}{G + 9K\alpha^2 + rac{1}{\sqrt{3}}I_1lpha'}
ight
angle$$

$$N_{(2)} = t \left(\frac{d\epsilon_{12}}{dt} \right)^2 Var \left[2G - \frac{G^2}{G + 9K\alpha^2 + \frac{1}{\sqrt{3}}I_1\alpha'} \right]$$

Jeremić

Computational Geomechanics Group

Verification of D-P E-P Response - Monte Carlo



Modified Cam Clay Constitutive Model

$$\begin{split} \frac{d\sigma_{12}}{dt} &= G^{ep} \frac{d\epsilon_{12}}{dt} = \eta(\sigma_{12}, G, M, e_0, p_0, \lambda, \kappa, \epsilon_{12}; t) \\ \eta &= \left[2G - \frac{\left(36\frac{G^2}{M^4}\right)\sigma_{12}^2}{\frac{(1+e_0)p(2p-p_0)^2}{\kappa} + \left(18\frac{G}{M^4}\right)\sigma_{12}^2 + \frac{1+e_0}{\lambda - \kappa}pp_0(2p-p_0)} \right] \end{split}$$

Advection and diffusion coefficients of FPK equation

$$N_{(1)}^{(i)} = \left\langle \eta^{(i)}(t) \right\rangle + \int_0^t d\tau cov \left[\frac{\partial \eta^{(i)}(t)}{\partial t}; \eta^{(i)}(t-\tau) \right]$$

$$N_{(2)}^{(i)} = \int_0^t d\tau cov \left[\eta^{(i)}(t); \eta^{(i)}(t-\tau) \right]$$

Jeremić

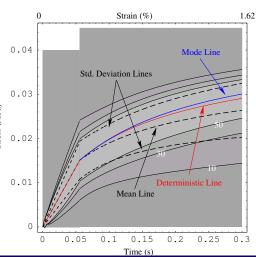
Computational Geomechanics Group

UCDAVIS

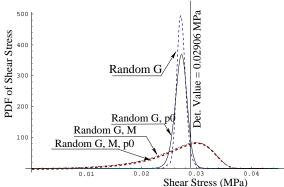
Motivation

Low OCR Cam Clay with Random G, M and p_0

- Non-symmetry in probability distribution
- Difference between mean, mode and deterministic
- Divergence at critical state because M is uncertain



Comparison of Low OCR Cam Clay at ϵ = 1.62 %



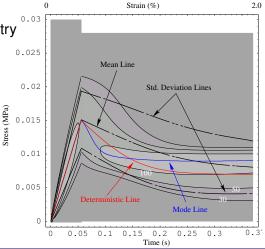
- None coincides with deterministic
- Some very uncertain, some very certain
- Either on safe or unsafe side

High OCR Cam Clay with Random G and M

Large non-symmetry in probability distribution

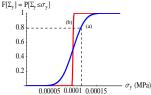
Significant differences in mean, mode, and deterministic

Divergence at critical state. M is uncertain



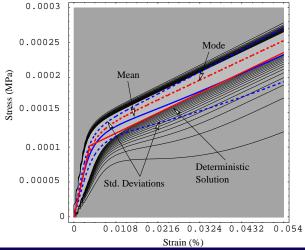
Probabilistic Yielding

- ▶ Weighted elastic and elastic–plastic Solution $\partial P(\sigma,t)/\partial t = -\partial \left(N_{(1)}^w P(\sigma,t) \partial \left(N_{(2)}^w P(\sigma,t)\right)\partial \sigma\right)/\partial \sigma$
- ▶ Weighted advection and diffusion coefficients are then $N_{(1,2)}^w(\sigma) = (1 P[\Sigma_y \le \sigma])N_{(1)}^{el} + P[\Sigma_y \le \sigma]N_{(1)}^{el-pl}$
- Cumulative Probability Density function (CDF) of the yield function



B. Jeremić and K. Sett. On Probabilistic Yielding of Materials. in review in Communications in Numerical Methods ir Engineering, 2007.

Transformation of a Bi-Linear (von Mises) Response



Outline

Motivation

Uncertainties in Material

Stochastic Elastic-Plastic Finite Element Method

SEPERM Formulations

An Application

Seismic Wave Propagation Through Uncertain Soils

Summary

Governing Equations & Discretization Scheme

Governing equations of mechanics:

$$A\sigma = \phi(t); \quad Bu = \epsilon; \quad \sigma = D\epsilon$$

- Discretization (spatial and stochastic) schemes
 - Input random field material properties (D) → Karhunen–Loève (KL) expansion, optimal expansion, error minimizing property
 - ► Unknown solution random field (u) → Polynomial Chaos (PC) expansion
 - ▶ Deterministic spatial differential operators (A & B) → Regular shape function method with Galerkin scheme

Spectral Stochastic Elastic-Plastic FEM

► Minimizing norm of error of finite representation using Galerkin technique (Ghanem and Spanos 2003):

$$\sum_{n=1}^{N} K_{mn} d_{ni} + \sum_{n=1}^{N} \sum_{j=0}^{P} d_{nj} \sum_{k=1}^{M} C_{ijk} K'_{mnk} = \langle F_{m} \psi_{i} [\{\xi_{r}\}] \rangle$$

SEPFEM

$$K_{mn} = \int_D B_n D B_m dV$$
 $K'_{mnk} = \int_D B_n \sqrt{\lambda_k} h_k B_m dV$ $C_{ijk} = \left\langle \xi_k(\theta) \psi_i [\{\xi_r\}] \psi_j [\{\xi_r\}] \right\rangle$ $F_m = \int_D \phi N_m dV$

Inside SEPFEM

- Explicit stochastic elastic—plastic finite element computations
- ► FPK probabilistic constitutive integration at Gauss integration points
- ▶ Increase in (stochastic) dimensions (KL and PC) of the problem (parallelism)
- Development of the probabilistic elastic-plastic stiffness tensor

SEPFEM

SEPFEM Verification Example

Outline

Motivation

Stochastic Systems: Historical Perspectives

Uncertainties in Material

Probabilistic Elasto—Plasticity

PEP Formulations

Probabilistic Elastic—Plastic Response

Stochastic Elastic-Plastic Finite Element Method

SEPFEM Formulations

SEPFEM Verification Example

An Application

Seismic Wave Propagation Through Uncertain Soils

Summary

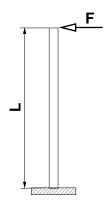
Motivation

1–D Static Pushover Test Example

Linear elastic model:

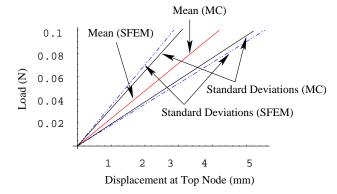
$$\label{eq:G} \begin{split} &< G>= 2.5 \text{ kPa}, \\ &\textit{Var}[\textit{G}] = 0.15 \text{ kPa}^2, \\ &\text{correlation length for } \textit{G} = 0.3 \text{ m}. \end{split}$$

► Elastic-plastic material model, von Mises, linear hardening,
 < G>= 2.5 kPa,
 Var[G] = 0.15 kPa²,
 correlation length for G = 0.3 m,
 C_{II} = 5 kPa,



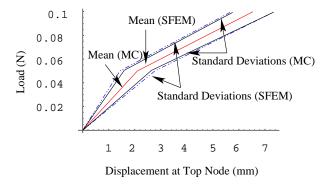
 $C'_{ij} = 2$ kPa.

Linear Elastic FEM Verification



Mean and standard deviations of displacement at the top node, linear elastic material model, KL-dimension=2, order of PC=2.

SEPFEM verification



Mean and standard deviations of displacement at the top node, von Mises elastic-plastic linear hardening material model, KL-dimension=2, order of PC=2.

Outline

Motivation

Motivation

Stochastic Systems: Historical Perspectives

Uncertainties in Material

Probabilistic Elasto—Plasticity

PEP Formulations

Probabilistic Elastic—Plastic Response

Stochastic Elastic-Plastic Finite Element Method

SEPFEM Formulations

SEPFEM Verification Example

An Application

Seismic Wave Propagation Through Uncertain Soils

Summary

Applications

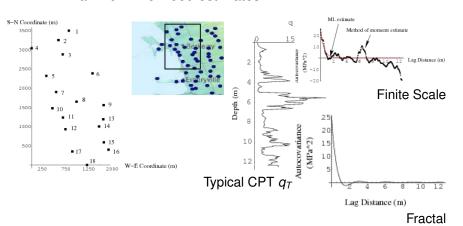
- Stochastic elastic-plastic simulations of soils and structures
- Probabilistic inverse problems
- Geotechnical site characterization design
- Optimal material design

Seismic Wave Propagation through Stochastic Soil

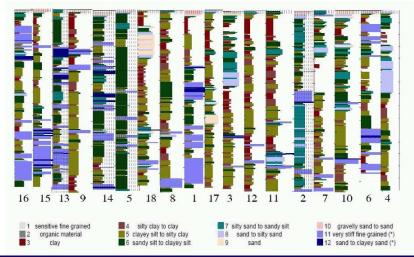
- ▶ Soil as 12.5 m deep 1-D soil column (von Mises Material)
 - Properties (including testing uncertainty) obtained through random field modeling of CPT q_T $\langle q_T \rangle = 4.99$ MPa; $Var[q_T] = 25.67$ MPa²; Cor. Length $[q_T] = 0.61$ m; Testing Error = 2.78 MPa²
- ▶ q_T was transformed to obtain G: $G/(1-\nu) = 2.9q_T$
 - Assumed transformation uncertainty = 5% $\langle G \rangle = 11.57 MPa$; $Var[G] = 142.32 MPa^2$ Cor. Length [G] = 0.61 m
- ▶ Input motions: modified 1938 Imperial Valley

Random Field Parameters from Site Data

▶ Maximum likelihood estimates



Variable (Uniform) CPT Site Data

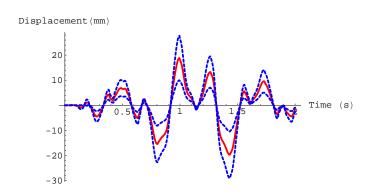


Jeremić

Motivation

Computational Geomechanics Group

Seismic Wave Propagation through Stochastic Soil



Mean± Standard Deviation

Summary

- Developed a second-order (mean and variance) exact, method to account for probabilistic elastic-plastic material simulation
- ▶ In combination with SSFEM, PEP methodology allows simulations of both point-wise and spatial uncertainty of elastic-plastic materials
- Consistent modeling of spatial and point-wise uncertainties in material properties for static and dynamic behaviors of solids and structures
- Probably numerous applications

