Elastic–Plastic Behavior of Geomaterials: Modeling and Simulation Issues

Boris Jeremić
Zhaohui Yang (UA), Zhao Cheng (EarthMechanics Inc.),
Mahdi Taiebat (UBC)

Department of Civil and Environmental Engineering
University of California, Davis

GheoMat
Masseria Salamina
Italy, June 2009
Outline

Before We Start

Constitutive Level
- Small Deformation Elasto–Plasticity
- Explicit and Implicit Constitutive Integrations

Finite Element Level
- Formulation
- Statics and Dynamics

Examples
- Piles
- Pile Groups

Summary
Before We Start

Motivation

- Use well developed theory of elasto–plasticity for modeling and simulating geomaterials
- Issues at the *constitutive* and the *finite element* levels
- Verification and Validation is very important
- There is no limit to what problems one can address (can numerically simulate)
Loading Process

- Stages
- Increments
- Iterations
Outline

Before We Start

Constitutive Level
Small Deformation Elasto–Plasticity
Explicit and Implicit Constitutive Integrations

Finite Element Level
Formulation
Statics and Dynamics

Examples
Piles
Pile Groups

Summary
Small Deformation

\[E_{ij} = \frac{1}{2} \left(u_{i,j} + u_{j,i} + u_{i,k} u_{k,j} \right) ; \quad \varepsilon_{ij} = \frac{1}{2} \left(u_{i,j} + u_{j,i} \right) \]
Small Deformation Elasto–Plasticity

Elasticity

- Hyperelasticity, $\sigma_{ij} = \partial W / \partial \epsilon_{ij}$ (where W is the strain energy function per unit volume)

- Hypoelasticity, direct modeling of nonlinear elastic deformation, not thermodynamically consistent

- Linear and nonlinear elastic models
Incremental Elasto–Plasticity

- Additive decomposition of strain $\Delta \epsilon_{ij} = \Delta \epsilon_{ij}^e + \Delta \epsilon_{ij}^p$

- Elastic relationship (generalized Hooke’s law)
 $\Delta \sigma_{ij} = E_{ijkl} \Delta \epsilon_{kl}^e$

- (non) Associated plastic flow rule
 $\Delta \epsilon_{ij}^p = \Delta \lambda \frac{\partial Q}{\partial \sigma_{ij}} = \Delta \lambda \ m_{ij}(\sigma_{ij}, q_*)$

- Hardening/softening (isotropic/anisotropic) law
 $\Delta q_* = \Delta \lambda \ h_*(\tau_{ij}, q_*)$
Karush–Kuhn–Tucker Conditions

- Yield function $F(\sigma_{ij}, q_\star) \leq 0$
- Plastic consistency parameter $\Delta \lambda \geq 0$
- Loading – unloading condition $F \Delta \lambda = 0$
Midpoint Integration Algorithm
Midpoint Integration Algorithm

- Rarely used (even if for $\alpha = 0.5$ it is second order accurate)
- Explicit algorithm ($\alpha = 0.0$)
- Implicit algorithm ($\alpha = 1.0$)
Outline

Before We Start

Constitutive Level
- Small Deformation Elasto–Plasticity
- Explicit and Implicit Constitutive Integrations

Finite Element Level
- Formulation
- Statics and Dynamics

Examples
- Piles
- Pile Groups

Summary
Explicit Integration Algorithm
Explicit Integration Algorithm

Increments

\[\Delta \sigma_{mn} = E_{mn pq} \Delta \epsilon_{pq} - E_{mn pq} \frac{n_{rs} E_{rstu} \Delta \epsilon_{tu}}{n_{ab} E_{abcd} n_{cd} - \xi_A h_A} n_{mpq} \]

\[\Delta q_A = \left(\frac{n_{mn} E_{mn pq} \Delta \epsilon_{pq}}{c_{ros} n_{mn} E_{mn pq} c_{ros} m_{pq} - \xi_A h_A} \right) h_A \]
Explicit Integration Algorithm

Tangent stiffness

\[
\begin{align*}
\text{cont} E^{ep}_{pqmn} &= E_{pqmn} - \frac{E_{pqkl}^{n} m_{kl}^{n} n_{ij} E_{ijmn}}{n_{ot} E_{ots} n_{rs}^{n} m_{rs} - \zeta_{A} h_{A}}
\end{align*}
\]
Explicit Integration Algorithm

- Relatively simple (first derivatives)
- Fast (single step)
- Inaccurate (accumulates error)
- Popular (most/all commercial codes)
- Works well with global explicit algorithm
Implicit Integration Algorithm
Implicit Integration Algorithm

- Also based on elastic predictor – plastic corrector
 \[n+1\sigma_{ij} = \text{pred}\sigma_{ij} - \Delta \lambda \ E_{ijkl} \ n+1m_{kl} \]

- Tensor of residuals used in iterations
 \[r_{ij} = \sigma_{ij} - (\text{pred}\sigma_{ij} - \Delta \lambda \ E_{ijkl} \ m_{kl}) \]

- Iterative increments
 \[d(\Delta \lambda) = (\text{old}f - \ n^T \ C \ \text{old}r) / (\ n^T \ C \ M) \]
 \[\begin{cases}
 d\sigma_{mn} \\
 dq_B \end{cases} = -C \ (\text{old}r + d(\Delta \lambda)m) \]
 with \[n = \begin{bmatrix} n_{mn} \\
 \xi_B \end{bmatrix}, \ m = \begin{bmatrix} E_{ijkl}m_{kl} \\
 -h_A \end{bmatrix}, \ \text{old}r = \begin{bmatrix} \text{old}\sigma_{ij} \\
 \text{old}r_A \end{bmatrix} \]
Explicit and Implicit Constitutive Integrations

Implicit Integration Algorithm

- Super-matrix C has different formats depending on a number and type of internal variables

$$C = \left[I^S_{ijmn} + \Delta \lambda E_{ijkl} \frac{\partial m_{kl}}{\partial \sigma_{mn}} \right]^{-1}$$

$$C = \left[I^S_{ijmn} + \Delta \lambda E_{ijkl} \frac{\partial m_{kl}}{\partial \sigma_{mn}} \right]^{-1}$$

$$C = \left[I^S_{ijmn} + \Delta \lambda E_{ijkl} \frac{\partial m_{kl}}{\partial \sigma_{mn}} \right]^{-1}$$

$$C = \left[I^S_{ijmn} + \Delta \lambda E_{ijkl} \frac{\partial m_{kl}}{\partial \sigma_{mn}} \right]^{-1}$$

Jeremić

Computational Geomechanics Group

Elastic–Plastic Behavior of Geomaterials: Modeling and Simulation Issues
Implicit Integration Algorithm

Consistent (algorithmic) stiffness

\[
\begin{bmatrix}
\frac{d\sigma_{ij}}{d\sigma}
\end{bmatrix}
=
\begin{bmatrix}
C - \frac{Cmn^T C}{n^T C m}
\end{bmatrix}
\begin{bmatrix}
E_{ijmn} d\epsilon_{mn}^{pred}
\end{bmatrix}
\]

\[
\begin{bmatrix}
\end{bmatrix}
=
\begin{bmatrix}
0
\end{bmatrix}
\]
Implicit Integration Algorithm

- Relatively complicated (first and second derivatives, inverse)
- Relatively slow (but improves global Newton iterations)
- Accurate (consistency condition satisfied at the end, within tolerance)
- Popular for research
- Unpopular in commercial codes (except simple material models)
- Designed to work with global Newton algorithm
Outline

Before We Start

Constitutive Level
 Small Deformation Elasto–Plasticity
 Explicit and Implicit Constitutive Integrations

Finite Element Level
 Formulation
 Statics and Dynamics

Examples
 Piles
 Pile Groups

Summary
Principle of Virtual Displacements

\[\int_V \sigma_{ij} \delta \epsilon_{ij} \, dV = \int_V \left(f^B_i - \rho \ddot{u}_i \right) \delta u_i \, dV + \int_S f^S_i \delta u_i \, dS \]
Discretization

\[u \approx \hat{u}_a = H_l \ddot{u}_{la} \]

\[\varepsilon_{ab} \approx \hat{\varepsilon}_{ab} = \frac{1}{2} \left(\hat{u}_{a,b} + \hat{u}_{b,a} \right) = \frac{1}{2} \left((H_l \ddot{u}_{la})_b + (H_l \ddot{u}_{lb})_a \right) = \frac{1}{2} \left((H_{l,b} \ddot{u}_{la}) + (H_{l,a} \ddot{u}_{lb}) \right) \]
FEM Equations

\[\bigcup_{(m)} (l_{acJ}) \ddot{u}_{Jc} + \bigcup_{(m)} (k_{acJ}) \ddot{u}_{Jc} = \bigcup_{m} (f_B^I) + \bigcup_{m} (f_S^I) \]

\[(l_{acJ}) = \int_{V_m} H_j \delta_{ac} \rho H_l \, dV^m ; \quad (f_B^I) = \int_{V_m} f_{a}^{B} H_l \, dV^m \]

\[(k_{acJ}) = \int_{V_m} H_{l,b} E_{abcd} H_{J,d} \, dV^m ; \quad (f_S^I) = \int_{S_m} f_{a}^{S} H_l \, dS^m \]
Outline

Before We Start

Constitutive Level
- Small Deformation Elasto–Plasticity
- Explicit and Implicit Constitutive Integrations

Finite Element Level
- Formulation
- Statics and Dynamics

Examples
- Piles
- Pile Groups

Summary
Residual Force Equation in Statics

\[r_i(u_j, \lambda) = f_i^{\text{int}}(u_j) - \lambda f_i^{\text{ext}} = 0 \]

- \(f_i^{\text{int}}(u_j) \) are the internal forces which are functions of the displacements \(u_j \),
- \(f_i^{\text{ext}} \) is a fixed external loading vector
- \(\lambda \) is a load–level parameter
- Proportional loading
Advancing the Solution

Load λf

λf_{ext}

λf_{ext}

λf_{ext}

Displacement u

u_0

Δu_1

Δu_2

Δu_3

Equilibrium Path

Constraint Hypersurface

$(u_1, \lambda_{f_{\text{ext}}})$

$(u_2, \lambda_{f_{\text{ext}}})$

$(u_3, \lambda_{f_{\text{ext}}})$

$(u_p, \lambda_{f_{\text{ext}}})$
Hyper–spherical Constraint

\[s = \int ds \quad \text{where} \quad ds = \sqrt{\frac{\psi_u^2}{u_{\text{ref}}^2} u_i S_{ij} u_j + d\lambda^2 \psi_f^2} \]

or, in incremental form:

\[a = (\Delta s)^2 - (\Delta l)^2 = \left(\frac{\psi_u^2}{u_{\text{ref}}^2} \Delta u_i S_{ij} \Delta u_i + \Delta \lambda^2 \psi_f^2 \right) - (\Delta l)^2 \]
Specializations

- Coefficients ψ_u and ψ_f may not be simultaneously zero
- If $S_{ij} = I_{ij}$ and $u_{ref} = 1 \rightarrow$ arclength method
- If $S_{ij} = K_{ij}^t$ and $\psi_f \equiv 0 \rightarrow$ external work constraint
- If $\psi_u \equiv 0$ and $\psi_f \equiv 1 \rightarrow$ load control
- If $\psi_u \equiv 1$, $\psi_f \equiv 0$ and $S_{ij} = I_{ij} \rightarrow$ generalized displacement control
Following the Equilibrium Path in Statics

- Family of Newton methods (full, initial stress, modified...)
- Traversing equilibrium path in positive sense (positive external work criterion; angle criterion)
- Accuracy control
- Numerical stability
- Automatic increments
- Convergence criteria (absolute, relative, force and/or displacement and/or energy based)
Transient Integration Algorithms

- Finite differences, simple, but inaccurate

- Wilson $\theta = 1.37$, too much numerical damping

- Newmark, controllable numerical damping, period elongation
 $$\gamma \geq 1/2, \quad \beta = 1/4(\gamma + 1/2)^2$$

- Hilber–Hughes–Taylor, extension of Newmark with better damping
 $$-1/3 \leq \alpha \leq 0, \quad \gamma = 1/2(1 - 2\alpha), \quad \beta = 1/4(1 - \alpha)^2$$
Dynamic Analysis

- Stability (artificial introduction of higher frequencies by discretization process)
- Accuracy, conservation of energy and period
- Time step choice (the shorter the better, unless too many (artificial) high frequencies are present).
- multiple DOF type systems (u-p-U, structural elements...)
Outline

Before We Start

Constitutive Level
Small Deformation Elasto–Plasticity
Explicit and Implicit Constitutive Integrations

Finite Element Level
Formulation
Statics and Dynamics

Examples
Piles
Pile Groups

Summary
Single Pile in Layered Soils: Model

Case 1 & 2: Clay
Case 3 & 4: Sand
Case 1 & 4: Clay
Case 2 & 3: Sand

Interface

Jeremić
Computational Geomechanics Group UCDavis
Elastic–Plastic Behavior of Geomaterials: Modeling and Simulation Issues
On the topic of pile foundations, some key data points for the prototype are available:

- **Sand:**
 - Friction angle ϕ of 37.1°,
 - Shear modulus at a depth of 13.7 m of 8960 kPa ($E_o = 17400$ kPa),
 - Poisson ratio of 0.35
 - Unit weight of 14.50 kN/m3.
 - Dilation angle 0°

- **Clay (made up):**
 - Shear strength 21.7 kPa
 - Young’s modulus 11000 kPa
 - Poisson ratio 0.45
 - Unit weight 13.7 kN/m3
Single Pile in Sand: M, Q, p
Single Pile in Clay: M, Q, p
Single Pile in Sand with Clay Layer: M, Q, p
Single Pile in Clay with Sand Layer: M, Q, p
Single Pile in Sand: $p - y$ Response
Single Pile in Clay: $p - y$ Response
Single Pile in Sand with Clay Layer: $p - y$ Response
Single Pile in Clay with Sand Layer: $p - y$ Response

![Graph showing lateral pressure vs. lateral displacement for different depths.](image)

Jeremić

Elastic–Plastic Behavior of Geomaterials: Modeling and Simulation Issues
$p - y$ Pressure Ratio Reduction for Layered Soils
Outline

Before We Start

Constitutive Level
- Small Deformation Elasto–Plasticity
- Explicit and Implicit Constitutive Integrations

Finite Element Level
- Formulation
- Statics and Dynamics

Examples
- Piles
- Pile Groups

Summary
Pile Group Simulations
Bending Moments

![Graph showing bending moments for pile groups.](image-url)
Out of Plane Effects
Load Distribution per Pile

![Graph showing load distribution per pile with various rows and piles indicated.]
Piles Interaction at -2.0m ($\rho - y$)
Summary

- Importance of consistent formulation, material modeling and implementation
- Verified, validate models and simulations tools used for prediction of behavior
- Program and examples available in public domain (Author’s web site)