Jeremić

Constitutive Level

Finite Element Level

Summary

Elastic–Plastic Behavior of Geomaterials: Modeling and Simulation Issues

Boris Jeremić Zhaohui Yang (UA), Zhao Cheng (EarthMechanics Inc.), Mahdi Taiebat (UBC)

> Department of Civil and Environmental Engineering University of California, Davis

> > GheoMat Masseria Salamina Italy, June 2009

> > > Computational Geomechanics Group UCDAVIS

Finite Element Level

Summary

Outline

Before We Start

Constitutive Level

Small Deformation Elasto–Plasticity Explicit and Implicit Constitutive Integrations

Finite Element Level

Formulation Statics and Dynamics

Examples

Piles Pile Groups

Summary

Jeremić

Computational Geomechanics Group UCDAVIS

Summary

Before We Start

Motivation

- Use well developed theory of elasto-plasticity for modeling and simulating geomatarials
- Issues at the constitutive and the finite element levels
- Verification and Validation is very important
- There is no limit to what problems one can address (can numerically simulate)

Before	We	Start
00		

Finite Element Level

Summary

Before We Start

Loading Process

- Increments
- Iterations

Jeremić

Computational Geomechanics Group UCDAVIS

Finite Element Level

Summary

Small Deformation Elasto-Plasticity

Outline

Before We Start

Constitutive Level

Small Deformation Elasto-Plasticity

Explicit and Implicit Constitutive Integrations

Finite Element Level

Formulation Statics and Dynamics

Examples

Piles Pile Groups

Summary

Jeremić

Computational Geomechanics Group UCDAVIS

Constitutive Level

Finite Element Level

Summary

Small Deformation Elasto-Plasticity

Small Deformation

$${m {\it E}_{ij}} = rac{1}{2} \left({{u_{i,j}} + {u_{j,i}} + {u_{i,k}}{u_{k,j}}}
ight) ~~;~~ \epsilon_{ij} = rac{1}{2} ({u_{i,j}} + {u_{j,i}})$$

Computational Geomechanics Group UCDAVIS

Elastic-Plastic Behavior of Geomaterials: Modeling and Simulation Issues

Jeremić

Constitutive Level

Finite Element Level

Summary

Small Deformation Elasto-Plasticity

Elasticity

Jeremić

- ► Hyperelasticity, σ_{ij} = ∂W/∂ε_{ij} (where W is the strain energy function per unit volume)
- Hypoelasticity, direct modeling of nonlinear elastic deformation, not thermodynamically consistent
- Linear and nonlinear elastic models

Finite Element Level

Summary

Small Deformation Elasto-Plasticity

Incremental Elasto–Plasticity

- Additive decomposition of strain $\Delta \epsilon_{ij} = \Delta \epsilon^{e}_{ij} + \Delta \epsilon^{p}_{ij}$
- ► Elastic relationship (generalized Hooke's law) $\Delta \sigma_{ij} = E_{ijkl} \Delta \epsilon^{e}_{kl}$
- (non) Associated plastic flow rule $\Delta \epsilon_{ij}^{p} = \Delta \lambda \ \partial Q / \partial \sigma_{ij} = \Delta \lambda \ m_{ij}(\sigma_{ij}, q_{*})$
- ► Hardening/softening (isotropic/anisotropic) law Δq_{*} = Δλ h_{*}(τ_{ij}, q_{*})

Jeremić

Constitutive Level

Finite Element Level

Summary

Small Deformation Elasto-Plasticity

Karush-Kuhn-Tucker Conditions

- Yield function $F(\sigma_{ij}, q_*) \leq 0$
- Plastic consistency parameter $\Delta \lambda \ge 0$
- loading unloading condition $F \Delta \lambda = 0$

Computational Geomechanics Group UCDAVIS

Constitutive Level

Finite Element Level

Summary

Small Deformation Elasto-Plasticity

Midpoint Integration Algorithm

Jeremić

Computational Geomechanics Group UCDAVIS

Jeremić

Constitutive Level

Finite Element Level

Summary

Small Deformation Elasto-Plasticity

Midpoint Integration Algorithm

- Rarely used (even if for $\alpha = 0.5$ it is second order accurate)
- Explicit algorithm ($\alpha = 0.0$)
- Implicit algorithm ($\alpha = 1.0$)

Computational Geomechanics Group UCDAVIS

Finite Element Level

Summary

Explicit and Implicit Constitutive Integrations

Outline

Before We Start

Constitutive Level

Small Deformation Elasto–Plasticity

Explicit and Implicit Constitutive Integrations

Finite Element Level

Formulation Statics and Dynamics

Examples

Piles Pile Groups

Summary

Jeremić

Computational Geomechanics Group UCDAVIS

Constitutive Level

Finite Element Level

Summary

Explicit and Implicit Constitutive Integrations

Explicit Integration Algorithm

Jeremić

Computational Geomechanics Group UCDAVIS

$$\Delta \sigma_{mn} = E_{mnpq} \ \Delta \epsilon_{pq} - E_{mnpq} \ \frac{{}^{\prime \prime n_{rs}} \ E_{rstu} \ \Delta \epsilon_{tu}}{{}^{\eta} n_{ab} \ E_{abcd} \ {}^{\eta} m_{cd} - \xi_A h_A} \ {}^{\eta} m_{pq}$$

$$\Delta q_{A} = \left(\frac{{}^{n}n_{mn} E_{mnpq} \Delta \epsilon_{pq}}{{}^{cros}n_{mn} E_{mnpq} {}^{cros}m_{pq} - \xi_{A}h_{A}}\right) h_{A}$$

Computational Geomechanics Group UCDAVIS

Elastic-Plastic Behavior of Geomaterials: Modeling and Simulation Issues

Jeremić

Constitutive Level

Finite Element Level

Examples

Summary

Explicit and Implicit Constitutive Integrations

Tangent stiffness

$${}^{cont}E^{ep}_{pqmn} = E_{pqmn} - rac{E_{pqkl}{}^n m_{kl}{}^n n_{ij}E_{ijmn}}{{}^n n_{ot}E_{otrs}{}^n m_{rs} - {}^n \xi_A{}{}^h h_A}$$

Jeremić

Computational Geomechanics Group UCDAVIS

Finite Element Level

Summary

Explicit and Implicit Constitutive Integrations

Explicit Integration Algorithm

- Relatively simple (first derivatives)
- Fast (single step)
- Inaccurate (accumulates error)
- Popular (most/all commercial codes)
- Works well with global explicit algorithm

Constitutive Level

Finite Element Level

Summary

Explicit and Implicit Constitutive Integrations

Implicit Integration Algorithm

Jeremić

Computational Geomechanics Group UCDAVIS

Jeremić

Constitutive Level

Finite Element Level

Summary

'nσ

σ

Explicit and Implicit Constitutive Integrations

Implicit Integration Algorithm

- ► Also based on elastic predictor plastic corrector ${}^{n+1}\sigma_{ij} = {}^{pred}\sigma_{ij} - \Delta\lambda \ E_{ijkl} \ {}^{n+1}m_{kl}$
- ► Tensor of residuals used in iterations $r_{ij} = \sigma_{ij} - ({}^{pred}\sigma_{ij} - \Delta\lambda E_{ijkl} m_{kl})$
- ► Iterative increments $d(\Delta\lambda) = \binom{old}{f} - \mathbf{n}^T \mathbb{C} \stackrel{old}{\mathbf{r}} \mathbf{r} / (\mathbf{n}^T \mathbb{C} \mathbf{M})$ $\begin{cases} d\sigma_{mn} \\ dq_B \end{cases} = -\mathbb{C} \binom{old}{\mathbf{r}} + d(\Delta\lambda)\mathbf{m}$ with $\mathbf{n} = \begin{cases} n_{mn} \\ \xi_B \end{cases}$, $\mathbf{m} = \begin{cases} E_{ijkl}m_{kl} \\ -h_A \end{cases}$, $old \mathbf{r} = \begin{cases} old \sigma_{ij} \\ old r_A \end{cases}$

Jeremić

Constitutive Level

Finite Element Level

Summary

Explicit and Implicit Constitutive Integrations

Implicit Integration Algorithm

Computational Geomechanics Group UCDAVIS

Before	We	Start

Finite Element Level

Summary

Explicit and Implicit Constitutive Integrations

Consistent (algorithmic) stiffness

$$\left\{ \begin{array}{c} \mathrm{d}\sigma_{ij} \\ \mathrm{d}q_A \end{array} \right\} = \left\{ \mathbb{C} - \frac{\mathbb{C}\mathbf{m}\mathbf{n}^T\mathbb{C}}{\mathbf{n}^T\mathbb{C}\mathbf{m}} \right\} \left\{ \begin{array}{c} E_{ijmn} \,\mathrm{d}\epsilon_{mn}^{pred} \\ 0 \end{array} \right\}$$

Computational Geomechanics Group UCDAVIS

Elastic-Plastic Behavior of Geomaterials: Modeling and Simulation Issues

Jeremić

Finite Element Level

Examples 00000000000 000000 Summary

Explicit and Implicit Constitutive Integrations

Implicit Integration Algorithm

- Relatively complicated (first and second derivatives, inverse)
- Relatively slow (but improves global Newton iterations)

- Accurate (consistency condition satisfied at the end, within tolerance)
- Popular for research
- Unpopular in commercial codes (except simple material models)
- Designed to work with global Newton algorithm

Jeremić

Constitutive Level

Finite Element Level

Examples 00000000000 000000 Summary

Formulation

Outline

Before We Start

Constitutive Level Small Deformation Elasto–Plasticity Explicit and Implicit Constitutive Integrations

Finite Element Level

Formulation

Statics and Dynamics

Examples

Piles Pile Groups

Summary

Jeremić

Computational Geomechanics Group UCDAVIS

Constitutive Leve

Finite Element Level

Summary

Formulation

Principle of Virtual Displacements

$$\int_{V} \sigma_{ij} \,\delta\epsilon_{ij} \,dV = \int_{V} \left(f_{i}^{B} - \rho \ddot{u}_{i}\right) \,\delta u_{i} \,dV + \int_{S} f_{i}^{S} \,\delta u_{i} \,dS$$

Jeremić

Computational Geomechanics Group UCDAVIS

Constitutive Level

Finite Element Level

Summary

Formulation

Discretization

$$u pprox \hat{u}_a = H_I \bar{u}_{Ia}$$

$$\begin{aligned} \epsilon_{ab} \approx \hat{e}_{ab} &= \frac{1}{2} \left(\hat{u}_{a,b} + \hat{u}_{b,a} \right) = \\ &= \frac{1}{2} \left((H_I \, \bar{u}_{la})_{,b} + (H_I \, \bar{u}_{lb})_{,a} \right) = \\ &= \frac{1}{2} \left((H_{I,b} \, \bar{u}_{la}) + (H_{I,a} \, \bar{u}_{lb}) \right) \end{aligned}$$

Computational Geomechanics Group UCDAVIS

Elastic-Plastic Behavior of Geomaterials: Modeling and Simulation Issues

Jeremić

Before We Start	Constitutive Level	Finite Element Level ooo● oooooooo	
Formulation			

FEM Equations

$$\bigcup_{(m)} {}^{(m)}M_{lacJ} \ \ddot{u}_{Jc} + \bigcup_{(m)} {}^{(m)}K_{lacJ} \ \bar{u}_{Jc} = \bigcup_{m} {}^{(m)}F^B_{la} + \bigcup_{m} {}^{(m)}F^S_{la}$$

$${}^{(m)}M_{lacJ} = \int_{V^m} H_J \,\delta_{ac} \,\rho \,H_I \,dV^m \quad ; \quad {}^{(m)}F^B_{la} = \int_{V^m} f^B_a \,H_I \,dV^m$$

$${}^{(m)}K_{lacJ} = \int_{V^m} H_{l,b} \ E_{abcd} \ H_{J,d} \ dV^m \quad ; \quad {}^{(m)}F^S_{la} = \int_{S^m} f^S_a \ H_l \ dS^m$$

Computational Geomechanics Group UCDAVIS

Elastic-Plastic Behavior of Geomaterials: Modeling and Simulation Issues

Jeremić

Constitutive Level

Finite Element Level

Summary

Statics and Dynamics

Outline

Before We Start

Constitutive Level

Small Deformation Elasto–Plasticity Explicit and Implicit Constitutive Integrations

Finite Element Level

Formulation Statics and Dynamics

Examples

Piles Pile Groups

Summary

Jeremić

Computational Geomechanics Group UCDAVIS

Jeremić

Constitutive Level

Finite Element Level

Summary

Statics and Dynamics

Residual Force Equation in Statics

$$r_i(u_j,\lambda) = f_i^{int}(u_j) - \lambda f_i^{ext} = 0$$

- ▶ f^{int}_i(u_j) are the internal forces which are functions of the displacements u_j,
- f_i^{ext} is a fixed external loading vector
- λ is a load–level parameter
- Proportional loading

Computational Geomechanics Group UCDAVIS

Constitutive Level

Finite Element Level

Summary

Statics and Dynamics

Advancing the Solution

Jeremić

Computational Geomechanics Group UCDAVIS

Constitutive Level

Finite Element Level

Summary

Statics and Dynamics

Hyper-spherical Constraint

$$s=\int ds$$
 where $ds=\sqrt{rac{\psi_u^2}{u_{ref}^2}}du_iS_{ij}du_j+d\lambda^2\psi_f^2$

or, in incremental form:

$$a = (\Delta s)^2 - (\Delta l)^2 = \left(rac{\psi_u^2}{u_{ref}^2} \Delta u_i S_{ij} \Delta u_i + \Delta \lambda^2 \psi_f^2
ight) - (\Delta l)^2$$

Computational Geomechanics Group UCDAVIS

Elastic-Plastic Behavior of Geomaterials: Modeling and Simulation Issues

Jeremić

Constitutive Level

Finite Element Level

Summary

Statics and Dynamics

Specializations

• Coefficients ψ_u and ψ_f may not be simultaneously zero

- ▶ If $S_{ij} = I_{ij}$ and $u_{ref} = 1 \rightarrow$ arclength method
- ▶ If $S_{ij} = K_{ij}^t$ and $\psi_f \equiv 0 \rightarrow$ external work constraint
- If $\psi_{u} \equiv 0$ and $\psi_{f} \equiv 1 \rightarrow \text{load control}$
- If ψ_u ≡ 1, ψ_f ≡ 0 and S_{ij} = I_{ij} → generalized displacement control

Jeremić

Finite Element Level

Summary

Statics and Dynamics

Following the Equilibrium Path in Statics

- Family of Newton methods (full, initial stress, modified...)
- Traversing equilibrium path in positive sense (positive external work criterion; angle criterion)
- Accuracy control
- Numerical stability
- Automatic increments
- Convergence criteria (absolute, relative, force and/or displacement and/or energy based)

Jeremić

Constitutive Level

Finite Element Level

Summary

Statics and Dynamics

Transient Integration Algorithms

- Finite differences, simple, but inacurate
- Wilson $\theta = 1.37$, too much numerical damping
- Newmark, controllable numerical damping, period elongation γ > 1/2, β = 1/4(γ + 1/2)²
- Hilber–Hughes–Taylor, extension of Newmark with better damping

$$-1/3 \le \alpha \le 0, \quad \gamma = 1/2(1-2\alpha), \quad \beta = 1/4(1-\alpha)^2$$

Finite Element Level

Summary

Statics and Dynamics

Dynamic Analysis

- Stability (artificial introduction of higher frequencies by discretization process)
- Accuracy, conservation of energy and period
- Time step choice (the shorter the better, unless too many (artificial) high frequencies are present).
- multiple DOF type systems (u-p-U, structural elements...)

Finite Element Level

 Summary

Piles

Outline

Before We Start

Constitutive Level

Small Deformation Elasto–Plasticity Explicit and Implicit Constitutive Integrations

Finite Element Level

Formulation Statics and Dynamics

Examples

Piles Pile Groups

Summary

Jeremić

Computational Geomechanics Group UCDAVIS

Jeremić

Constitutive Level

Finite Element Level

 Summary

Single Pile in Layered Soils: Model

Computational Geomechanics Group UCDAVIS

Jeremić

Constitutive Level

Finite Element Level

 Summary

Available Data for Prototype

- Sand:
 - friction angle ϕ of 37.1°,
 - Shear modulus at a depth of 13.7 m of 8960 kPa (*E_o* = 17400 kPa),
 - Poisson ratio of 0.35
 - Unit weight of 14.50 kN/m³.
 - Dilation angle 0°
- Clay (made up)
 - Shear strength 21.7 kPa
 - Young's modulus 11000 kPa
 - Poisson ratio 0.45
 - Unit weight 13.7 kN/m³

Constitutive Level

Finite Element Level

 Summary

Single Pile in Sand: M, Q, p

Jeremić

Computational Geomechanics Group UCDAVIS

Constitutive Leve 0000000 0000000000 Finite Element Level

 Summary

Single Pile in Clay: M, Q, p

Computational Geomechanics Group UCDAVIS

Elastic-Plastic Behavior of Geomaterials: Modeling and Simulation Issues

Jeremić

Finite Element Level

 Summary

Piles

Jeremić

Single Pile in Sand with Clay Layer: M, Q, p

Elastic-Plastic Behavior of Geomaterials: Modeling and Simulation Issues

Computational Geomechanics Group UCDAVIS

Finite Element Level

 Summary

Piles

Jeremić

Single Pile in Clay with Sand Layer: M, Q, p

Computational Geomechanics Group UCDAVIS

Finite Element Level

 Summary

Piles

Single Pile in Sand: p - y Response

Jeremić

Computational Geomechanics Group UCDAVIS

Finite Element Level

 Summary

Piles

Single Pile in Clay: p - y Response

Jeremić

Computational Geomechanics Group UCDAVIS

Constitutive Level

Finite Element Level

 Summary

Single Pile in Sand with Clay Layer: p - y Response

Jeremić

Computational Geomechanics Group UCDAVIS

Constitutive Level

Finite Element Level

 Summary

Single Pile in Clay with Sand Layer: p - y Response

Jeremić

Computational Geomechanics Group UCDAVIS

Constitutive Level

Finite Element Level

Examples 000000000000 000000 Summary

p - y Pressure Ratio Reduction for Layered Soils

Jeremić

Computational Geomechanics Group UCDAVIS

Finite Element Level

Examples

Summary

Pile Groups

Outline

Before We Start

Constitutive Level

Small Deformation Elasto–Plasticity Explicit and Implicit Constitutive Integrations

Finite Element Level

Formulation Statics and Dynamics

Examples

Piles Pile Groups

Summary

Jeremić

Computational Geomechanics Group UCDAVIS

Constitutive Level

Finite Element Level

Examples

Summary

Pile Groups

Pile Group Simulations

Jeremić

Computational Geomechanics Group UCDAVIS

Constitutive Level

Finite Element Level

Examples

Summary

Pile Groups

Jeremić

Bending Moments

Computational Geomechanics Group UCDAVIS

Constitutive Level

Finite Element Level

Examples

Summary

Pile Groups

Out of Plane Effects

Jeremić

Computational Geomechanics Group UCDAVIS

Constitutive Leve

Finite Element Level

Examples

Sun

Summary

Pile Groups

Load Distribution per Pile

Jeremić

Computational Geomechanics Group UCDAVIS

Constitutive Level

Finite Element Level

Examples

Summary

Pile Groups

Jeremić

Piles Interaction at -2.0m (p - y)

Computational Geomechanics Group UCDAVIS

Jeremić

Constitutive Level

Finite Element Level

Summary

Summary

- Importance of consistent formulation, material modeling and implementation
- Verified, validate models and simulations tools used for prediction of behavior
- Program and examples available in public domain (Author's web site)