Examples 0000000000 00000 000000

Fully Coupled, Two Phase Behavior of Geomaterials

Boris Jeremić Mahdi Taiebat (UBC), Zhao Cheng (EarthMechanics Inc.)

Department of Civil and Environmental Engineering University of California, Davis

> GheoMat Masseria Salamina Italy, June 2009

Jeremić

Computational Geomechanics Group UCDAVIS

Examples 0000000000 00000 000000

Outline

Before We Start

Modeling Formulation Elastic–Plastic Material Model

Examples Seismic Isolation by Liquefaction Piles in Liquefying Soils

Seismic Shearing of a Mild Slope with Liquefaction

Before We Start

Motivation

- There is no limit to what problems one can address (can numerically simulate)
- Mechanics of coupled, elastic–plastic porous solid elastic pore fluid
- Mechanics of infrustructure systems featuring coupled, elastic-plastic porous solid – elastic pore fluid
- Accurate modeling and simulation for infrustructure system design (safety and economy)

Examples 0000000000 00000 000000

Formulation

Before We Start

Modeling Formulation Elastic–Plastic Material Model

Examples Seismic Isolation by Liquefaction Piles in Liquefying Soils Seismic Shearing of a Mild Slope with Liquefaction

Jeremić

Computational Geomechanics Group UCDAVIS

Examples 0000000000 00000 000000

Formulation

Dynamic Equilibrium for Coupled Systems

- Effective stress principle $\sigma'_{ij} = \sigma_{ij} + \alpha \delta_{ij} p$; ($p = -1/3\sigma_{kk}$)
- ► Equilibrium of the mixture $\sigma_{ij,j} - \rho \ddot{u}_i - \rho_f [\ddot{w}_i + \underline{\dot{w}_j \dot{w}_{i,j}}] + \rho b_i = 0$; $(\rho = n\rho_f + (1 - n)\rho_s)$
- ► Equilibrium of the fluid $-p_{,i} - R_i - \rho_f \ddot{u}_i - \rho_f [\ddot{w}_i + \dot{w}_j \dot{w}_{i,j}]/n + \rho_f b_i = 0;$ (Darcy: $n\dot{w}_j = Ki; i = h_{,j}; R_i = k_{ij}^{-1} \dot{w}_j; k_{ij} = K_{ij}/\rho_f g [m]^3[s]/[kg])$
- Flow conservation $\dot{w}_{i,i} + \alpha \dot{\varepsilon}_{ii} + \dot{p}/Q + \underline{n\dot{\rho}_f/\rho_f + \dot{s}_0} = 0;$ $1/Q \equiv n/K_f + (1 - n)/K_s$

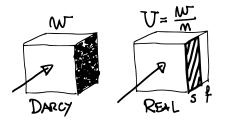
Examples 0000000000 00000 000000

Formulation

Jeremić

Dynamic Equilibrium for Coupled Systems (cont.)

After neglecting convective accelerations, density variations and assuming isothermal process (no volume expansion):


- Equilibrium of the mixture $\sigma_{ij,j} \rho \ddot{u}_i \rho_f \ddot{w}_i + \rho b_i = 0$
- ► Equilibrium of the fluid $-p_{,i} - R_i - \rho_f \ddot{u}_i - \rho_f \ddot{w}_i / n + \rho_f b_i = 0$
- Flow conservation $\dot{w}_{i,i} + \alpha \dot{\varepsilon}_{ii} + \dot{p}/Q = 0$

Examples 0000000000 00000 000000

Formulation

Dynamic Equilibrium for Coupled Systems (cont.)

Replace relative pseudo–displacement w_i with real displacement $U_i = u_i + U_i^R = u_i + w_i/n$

 Examples 0000000000 00000 000000

Formulation

Dynamic Equilibrium for Coupled Systems (cont.)

After some manipulations we obtain

$$\sigma_{ij,j}^{''} - (\alpha - n)p_{,i} + (1 - n)
ho_s b_i - (1 - n)
ho_s \ddot{u}_i + nR_i = 0$$

$$-np_{,i}+n\rho_f b_i-n\rho_f \ddot{U}_i-nR_i=0$$

$$-n\dot{U}_{i,i}=(lpha-n)\dot{\varepsilon}_{ii}+\dot{p}/Q$$

Jeremić

Computational Geomechanics Group UCDAVIS

 Examples 0000000000 00000 000000

Formulation

Fully Coupled u - p - U Formulation

- Formulation: fully coupled by Zienkiewicz and Shiomi 1984), nonlinear dynamics by Argyris and Mlejnek (1991)
- Physical, velocity proportional damping from solid–fluid interaction (not using Rayleigh damping)
- Accelerations of pore fluid not neglected
 - important for SFSI
 - inertial forces of fluid allow liquefaction modeling
- Stable formulation for near incompressible pore fluid

+

+

Jeremić

 Examples 0000000000 00000 000000 Summary 0

Formulation

Finite Element Discretization

$$\begin{bmatrix} (M_{s})_{KijL} & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & (M_{f})_{KijL} \end{bmatrix} \begin{bmatrix} \ddot{\overline{u}}_{Lj} \\ \ddot{\overline{p}}_{N} \\ \vdots \\ \ddot{\overline{U}}_{Lj} \end{bmatrix} + \\\begin{bmatrix} (C_{1})_{KijL} & 0 & -(C_{2})_{KijL} \\ 0 & 0 & 0 \\ -(C_{2})_{LjiK} & 0 & (C_{3})_{KijL} \end{bmatrix} \begin{bmatrix} \dot{\overline{u}}_{Lj} \\ \dot{\overline{p}}_{N} \\ \vdots \\ \dot{\overline{U}}_{Lj} \end{bmatrix} + \\\begin{bmatrix} (K^{EP})_{KijL} & -(G_{1})_{KiM} & 0 \\ -(G_{1})_{LjM} & -P_{MN} & -(G_{2})_{LjM} \\ 0 & -(G_{2})_{KiL} & 0 \end{bmatrix} \begin{bmatrix} \overline{\overline{u}}_{Lj} \\ \overline{\overline{p}}_{M} \\ \vdots \\ \overline{\overline{U}}_{Lj} \end{bmatrix} = \begin{bmatrix} \overline{\overline{f}}_{Ki}^{solid} \\ 0 \\ \overline{\overline{f}}_{Kij}^{fluid} \\ \overline{f}_{Kij} \end{bmatrix}$$

Computational Geomechanics Group UCDAVIS

Examples 0000000000 00000 000000

Formulation

Jeremić

Finite Element Discretization

$$\begin{split} (M_{s})_{KijL} &= \int_{\Omega} N_{K}^{u} (1-n) \rho_{s} \delta_{ij} N_{L}^{u} d\Omega \quad ; \quad (M_{f})_{KijL} = \int_{\Omega} N_{K}^{U} n \rho_{f} \delta_{ij} N_{L}^{U} d\Omega \\ (C_{1})_{KijL} &= \int_{\Omega} N_{K}^{u} n^{2} k_{ij}^{-1} N_{L}^{u} d\Omega \quad ; \quad (C_{2})_{KijL} = \int_{\Omega} N_{K}^{u} n^{2} k_{ij}^{-1} N_{L}^{U} d\Omega \\ (C_{3})_{KijL} &= \int_{\Omega} N_{K}^{U} n^{2} k_{ij}^{-1} N_{L}^{U} d\Omega \quad ; \quad (K^{EP})_{KijL} = \int_{\Omega} N_{K,m}^{u} D_{imjn} N_{L,n}^{u} d\Omega \\ (G_{1})_{KiM} &= \int_{\Omega} N_{K,i}^{u} (\alpha - n) N_{M}^{p} d\Omega \quad ; \quad (G_{2})_{KiM} = \int_{\Omega} n N_{K,i}^{U} N_{M}^{p} d\Omega \\ P_{NM} &= \int_{\Omega} N_{N}^{p} \frac{1}{Q} N_{M}^{p} d\Omega \end{split}$$

Computational Geomechanics Group UCDAVIS

Examples 0000000000 00000 000000

Formulation

Jeremić

Finite Element Discretization

$$\overline{f}_{Ki}^{solid} = \int_{\Gamma_t} N_K^u n_j \sigma_{ij}^{"} d\Gamma - \\ \int_{\Gamma_\rho} N_K^u (\alpha - n) n_i \rho d\Gamma \\ + \int_{\Omega} N_K^u (1 - n) \rho_s b_i d\Omega$$

$$\overline{f}_{Ki}^{fluid} = - \int_{\Gamma_\rho} n N_K^U n_i \rho d\Gamma \\ + \int_{\Omega} n N_K^U \rho_f b_i d\Omega$$

Computational Geomechanics Group UCDAVIS

Modeling ••••• Examples 0000000000 00000 000000

Elastic-Plastic Material Model

Before We Start

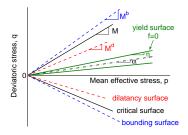
Modeling Formulation Elastic–Plastic Material Model

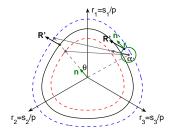
Examples Seismic Isolation by Liquefaction Piles in Liquefying Soils Seismic Shearing of a Mild Slope with Liquefaction

Elastic-Plastic Material Model

Modeling

Examples 0000000000 00000 000000


Dafalias Manzari Material Model


- Dafalias & Manzari (2004): critical state compatible elasto-plastic constitutive model for sands.
- Systematic and relatively simple calibration process.
- Capable of simulating different feature of sand response such as
 - hardening
 - softening
 - consolidation
 - dilation
- Single set of parameters for all stages of loading (self weight, cycling...)

Examples 0000000000 00000 000000 Summary o

Elastic-Plastic Material Model

Multiaxial Representation

Jeremić

Computational Geomechanics Group UCDAVIS

Examples • 000000000 • 00000 • 00000

Seismic Isolation by Liquefaction

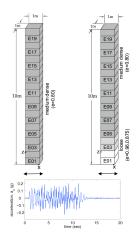
Outline

Before We Start

Modeling Formulation Elastic–Plastic Material Model

Examples Seismic Isolation by Liquefaction Piles in Liquefying Soils Seismic Shearing of a Mild Slope with Liquefaction

Jeremić


Computational Geomechanics Group UCDAVIS

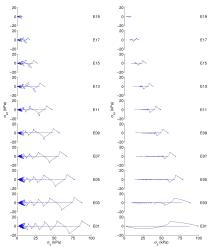
Examples 0●00000000 00000 00000

Summary 0

Seismic Isolation by Liquefaction

Model

Jeremić

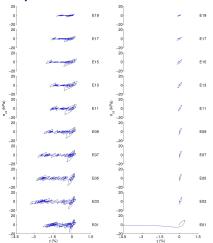

Computational Geomechanics Group UCDAVIS

Before	We	Start	

Examples 000000000 00000 00000

Seismic Isolation by Liquefaction

Stress Variation

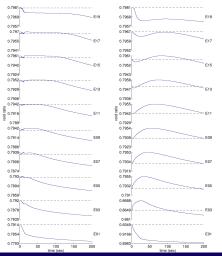

Jeremić

Computational Geomechanics Group UCDAVIS

Summary 0

Seismic Isolation by Liquefaction

Stress Strain Response

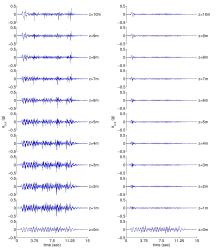


Jeremić

Computational Geomechanics Group UCDAVIS

Seismic Isolation by Liquefaction

Void Ratio Variation

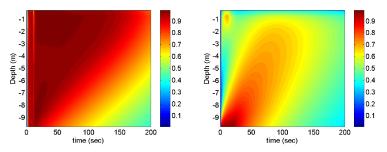

Jeremić

Computational Geomechanics Group UCDAVIS

Examples 00000000000 00000

Seismic Isolation by Liquefaction

Acceleration Time History

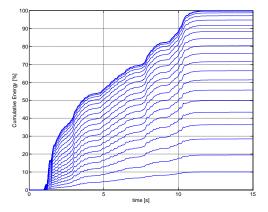

Jeremić

Computational Geomechanics Group UCDAVIS

Examples 00000000000 00000 Summary o

Seismic Isolation by Liquefaction

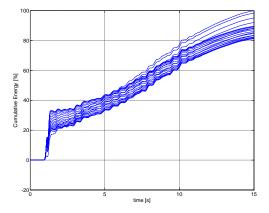
Excess Pore Pressure Ratio



Jeremić

Computational Geomechanics Group UCDAVIS

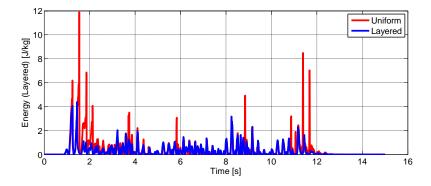
Seismic Isolation by Liquefaction


Elastic-Plastic Energy Dissipation: Uniform Soil

Computational Geomechanics Group UCDAVIS

Seismic Isolation by Liquefaction

Elastic–Plastic Energy Dissipation: Layered Soil



Computational Geomechanics Group UCDAVIS

Examples 0000000000 00000 00000 Summary o

Seismic Isolation by Liquefaction

Kinetic Energy at the Top

Jeremić

Computational Geomechanics Group UCDAVIS

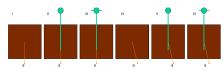
Examples

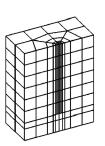
Piles in Liquefying Soils

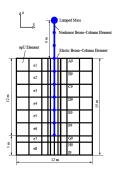
Before We Start

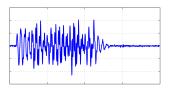
Modeling Formulation Elastic–Plastic Material Model

Examples Seismic Isolation by Liquefaction Piles in Liquefying Soils Seismic Shearing of a Mild Slope with Liquefaction


Jeremić


Computational Geomechanics Group UCDAVIS


Examples


Piles in Liquefying Soils

Bridge Pier–Pile Model

Computational Geomechanics Group UCDAVIS

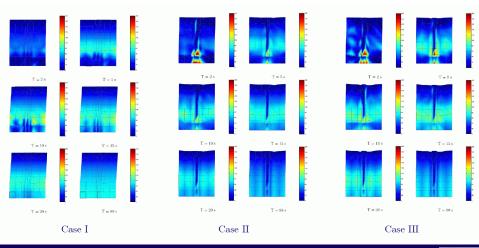
Fully Coupled, Two Phase Behavior of Geomaterials

Jeremić

Examples

Piles in Liquefying Soils

Bridge Pier–Pile Staged Construction


- Soil self weight (no pile)
- Excavations for pile
- Pile installation
 - impermeable filler material,
 - connecting solids and structure,
- Pile self weight,
- Construction of pier structure and self weight
- Seismic shaking
- Excess pore pressure dissipation

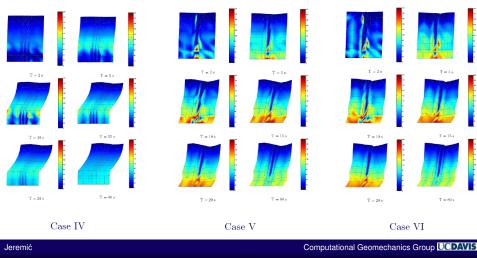
Examples

Summary o

Piles in Liquefying Soils

Bridge Pier in Level Ground

Jeremić


Computational Geomechanics Group UCDAVIS

Examples

Summary o

Piles in Liquefying Soils

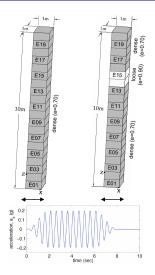
Bridge Pier in Sloping Ground

Examples

Seismic Shearing of a Mild Slope with Liquefaction

Before We Start

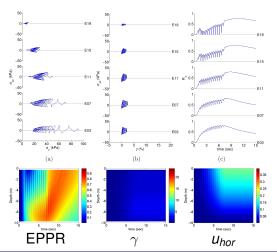
Modeling Formulation Elastic–Plastic Material Model


Examples Seismic Isolation by Liquefaction Piles in Liquefying Soils Seismic Shearing of a Mild Slope with Liquefaction

Jeremić

Examples

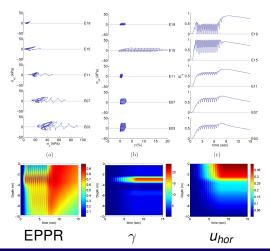
Seismic Shearing of a Mild Slope with Liquefaction


Slope Models

Examples

Seismic Shearing of a Mild Slope with Liquefaction

Uniform Slope with $a_{max} = 0.2g$


Jeremić

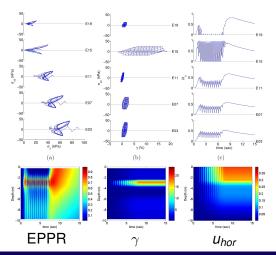
Computational Geomechanics Group UCDAVIS

Examples

Seismic Shearing of a Mild Slope with Liquefaction

Layered Slope with $a_{max} = 0.2g$

Jeremić


Computational Geomechanics Group UCDAVIS

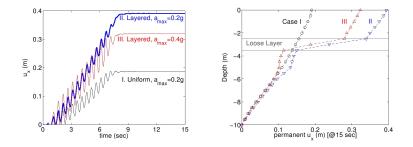
Examples

Summary o

Seismic Shearing of a Mild Slope with Liquefaction

Layered Slope with $a_{max} = 0.4g$

Jeremić


Computational Geomechanics Group UCDAVIS

Examples

Summary o

Seismic Shearing of a Mild Slope with Liquefaction

Surface Displacements

Jeremić

Computational Geomechanics Group UCDAVIS

- High fidelity numerical models (verified and validated) of Earthquake–Soil–(Structure) systems
- Space and time distribution of the matching triad: <u>Earthquake</u>, <u>Soil</u> and <u>Structure</u> (ESS) and its interaction determines possible benefits or detriments

Summary