SEPFEM 0000 0000 Applications

Summary

The Case for Probabilistic Elasto-Plasticity

Boris Jeremić Kallol Sett (UA) and Lev Kavvas

Department of Civil and Environmental Engineering University of California, Davis

> GheoMat Masseria Salamina Italy, June 2009

> > Computational Geomechanics Group

Jeremić

Motivation Probabil	listic Elasto–Plasticity 8	SEPFEM .	Applications	Summary
000000 000000 000000 000000	000000 00000000000000000000000000000000	0000 0000	000000	

Outline

Motivation

Stochastic Systems: Historical Perspectives Uncertainties in Material

Probabilistic Elasto-Plasticity

PEP Formulations Probabilistic Elastic–Plastic Response

Stochastic Elastic-Plastic Finite Element Method

SEPFEM Formulations SEPFEM Verification Example

Applications

Seismic Wave Propagation Through Uncertain Soils Probabilistic Analysis for Decision Making

Summary

Motivation ●00000	Probabilistic Elasto-Plasticity	SEPFEM	Applications	Summary
Stochastic S	systems: Historical Perspectives			
Outlin Mo	1e otivation Stochastic Systems: Histor Uncertainties in Material	ical Perspec	tives	
Pr	obabilistic Elasto–Plasticity PEP Formulations Probabilistic Elastic–Plastic	Response		
Ste	ochastic Elastic–Plastic Finit SEPFEM Formulations SEPFEM Verification Exam	e Element M	lethod	
Ap	plications			

Seismic Wave Propagation Through Uncertain Soils Probabilistic Analysis for Decision Making

Summary

Motivation 000000 Probabilistic Elasto–Plasticity

SEPFEN 0000 Applications

Summary

Stochastic Systems: Historical Perspectives

Failure Mechanisms for Geomaterials

Computed tomography (CT) images of resin-impregnated MGM specimens (above), are assembled to provide 3-D volume renderings (below) of density patterns formed by diffused bifurcation under the external loading stress profile applied during the experiments.

Soil: Inside Failure of "Uniform" MGM Specimen

Jeremić

Computational Geomechanics Group

Motivation	Probabilistic Elasto–Plasticity	SEPFEM	Applications	Summary	
000000 000000	000000000000000000000000000000000000000	0000	000000		
Stochastic Systems: Historical Perspectives					

Personal Motivation

- Probabilistic fish counting
- Williams' DEM simulations, differential displacement vortices
- SFEM round table
- Kavvas' probabilistic hydrology

Jerem<u>ić</u>

Motivation	Probabilistic Elasto–Plasticity	SEPFEM	Applications	Summary	
000000 000000	000000000000000000000000000000000000000	0000	000000		
Stochastic Systems: Historical Perspectives					

Types of Uncertainties

- Epistemic uncertainty due to lack of knowledge
 - Can be reduced by collecting more data
 - Mathematical tools are not well developed
 - trade-off with aleatory uncertainty
- Aleatory uncertainty inherent variation of physical system
 - Can not be reduced
 - Has highly developed mathematical tools

Ergodicity

- Exchange ensemble averages for time averages
- Is soil elasto-plasticity ergodic?
 - Can soil elastic–plastic statistical properties be obtained by temporal averaging?
 - Will soil elastic-plastic statistical properties "renew" at each occurrence?
 - Are soil elastic-plastic statistical properties statistically independent?
- Claim in literature that structural nonlinear behavior is non-ergodic while earthquake characteristics are (?!)
- However, earthquake characteristics is representing mechanics (fault slip) on a different scale...

Motivation	Probabilistic Elasto–Plasticity	SEPFEM	Applications	Summary
000000 000000	00000000000	0000 0000	000000	
Stochastic Systems: Hi	storical Perspectives			

Historical Overview

- ► Brownian motion, Langevin equation → PDF governed by simple diffusion Eq. (Einstein 1905)
- With external forces → Fokker-Planck-Kolmogorov (FPK) for the PDF (Kolmogorov 1941)
- Approach for random forcing → relationship between the autocorrelation function and spectral density function (Wiener 1930)
- ► Approach for random coefficient → Functional integration approach (Hopf 1952), Averaged equation approach (Bharrucha-Reid 1968), Numerical approaches, Monte Carlo method

Motivation	Probabilistic Elasto–Plasticity	SEPFEM	Applications	Summary	
000000 000000	000000000000000000000000000000000000000	0000	000000		

Outline Motivation

Stochastic Systems: Historical Perspectives Uncertainties in Material

Probabilistic Elasto-Plasticity

PEP Formulations Probabilistic Elastic–Plastic Response

Stochastic Elastic-Plastic Finite Element Method

SEPFEM Formulations SEPFEM Verification Example

Applications

Seismic Wave Propagation Through Uncertain Soils Probabilistic Analysis for Decision Making

Summary

Motivation	Probabilistic Elasto–Plasticity	SEPFEM	Applications	Summary	
000000 000000	000000000000000000000000000000000000000	0000 0000	000000		
Incertainties in Material					

Material Behavior Inherently Uncertain

- Spatial variability
- Point-wise uncertainty, testing error, transformation error

(Mayne et al. (2000)

Jeremić

Motivation	Probabilistic Elasto-Plasticity	SEPFEM	Applications	Summary
000000 000000	0000000000 0000000000000	0000 0000	000000 000000000	
Uncertainties in Material				

Motivation

Typical Coefficients of Variation of Different Soil Properties

Soil Property	Soil Type	PDF	Mean	COV (%)
Cone resistance	Sand Clay	LN	*	*
	Clay	N/LN		
Undrained shear strength	Clay (triaxial)	LN		5-20
	Clay (index S _u)	LN	*	10-35
	Clayey silt	N		5-15
Ratio Su/o'30	Clay	N/LN	*	5-15
Plastic limit	Clay	N	0.13-0.23	3-20
Liquid limit	Clay	N	0.30-0.80	3-20
Submerged unit weight	All soils	N	5-11 (kN/m ³)	0-10
Friction angle	Sand	N	*	2-5
Void ratio, porosity,	All soils	N	*	7-30
initial void ratio				
Over consolidation ratio	Clay	N/LN	*	10-35

(After Lacasse and Nadim 1996)

Computational Geomechanics Group

Jeremić

Motivation	Probabilistic Elasto–Plasticity	SEPFEM	Applications	Summary
000000 000000	000000000000000000000000000000000000000	0000	000000	
Lineartaintian in N	letevial .			

Soil Uncertainties and Quantification

- Natural variability of soil deposit (Fenton 1999)
 - Function of soil formation process
- Testing error (Stokoe et al. 2004)
 - Imperfection of instruments
 - Error in methods to register quantities
- Transformation error (Phoon and Kulhawy 1999)
 - \blacktriangleright Correlation by empirical data fitting (e.g. CPT data \rightarrow friction angle etc.)

Probabilistic Material (Soil Site) Characterization

- Ideal: complete probabilistic site characterization
- Large (physically large but not statistically) amount of data
 - Site specific mean and coefficient of variation (COV)
 - Covariance structure from similar sites (e.g. Fenton 1999)
- ► Moderate amount of data → Bayesian updating (e.g. Phoon and Kulhawy 1999, Baecher and Christian 2003)
- Minimal data: general guidelines for typical sites and test methods (Phoon and Kulhawy (1999))
 - COVs and covariance structures of inherent variability
 - COVs of testing errors and transformation uncertainties.

Motivation	Probabilistic Elasto–Plasticity	SEPFEM	Applications	Summary
000000 000000	000000000000000000000000000000000000000	0000	000000	
Uncertainties in Material				

Recent State-of-the-Art

- Governing equation
 - Dynamic problems $\rightarrow M\ddot{u} + C\ddot{u} + Ku = \phi$
 - Static problems \rightarrow $Ku = \phi$
- Existing solution methods
 - Random r.h.s (external force random)
 - FPK equation approach
 - Use of fragility curves with deterministic FEM (DFEM)
 - Random I.h.s (material properties random)
 - Monte Carlo approach with DFEM \rightarrow CPU expensive
 - ► Perturbation method → a linearized expansion! Error increases as a function of COV
 - \blacktriangleright Spectral method \rightarrow developed for elastic materials so far
- New developments for elasto-plastic applications

SEPFEM 0000 0000 Applications

Summary

PEP Formulations

Outline

Motivation

Stochastic Systems: Historical Perspectives Uncertainties in Material

Probabilistic Elasto-Plasticity

PEP Formulations

Probabilistic Elastic–Plastic Response

Stochastic Elastic-Plastic Finite Element Method

SEPFEM Formulations SEPFEM Verification Example

Applications

Seismic Wave Propagation Through Uncertain Soils Probabilistic Analysis for Decision Making

Summary

Motivation	Probabilistic Elasto–Plasticity	SEPFEM	Applications	Summary
000000	00000000000000000000000000000000000000	0000	000000	
PEP Formulations				

Uncertainty Propagation through Constitutive Eq.

► Incremental el–pl constitutive equation $\frac{d\sigma_{ij}}{dt} = D_{ijkl} \frac{d\epsilon_{kl}}{dt}$

$$D_{ijkl} = \left\{ egin{array}{ll} D^{el}_{ijkl} & ext{for elastic} \ D^{el}_{ijkl} - rac{D^{el}_{ijmn}m_{mn}n_{pq}D^{el}_{pqkl}}{n_{rs}D^{el}_{rstu}m_{tu} - \xi_*r_*} & ext{for elastic-plastic} \end{array}
ight.$$

Computational Geomechanics Group

Jeremić

Motivation	Probabilistic Elasto–Plasticity	SEPFEM	Applications	Summary
000000 000000	00000000000000000000000000000000000000	0000	000000	
PEP Formulations				

Previous Work

- ► Linear algebraic or differential equations → Analytical solution:
 - Variable Transf. Method (Montgomery and Runger 2003)
 - Cumulant Expansion Method (Gardiner 2004)
- Nonlinear differential equations (elasto-plastic/viscoelastic-viscoplastic):
 - ► Monte Carlo Simulation (Schueller 1997, De Lima et al 2001, Mellah et al. 2000, Griffiths et al. 2005...) → accurate, very costly
 - Perturbation Method (Anders and Hori 2000, Kleiber and Hien 1992, Matthies et al. 1997)

 \rightarrow first and second order Taylor series expansion about mean - limited to problems with small C.O.V. and inherits "closure problem"

Motivation	Probabilistic Elasto–Plasticity	SEPFEM	Applications	Summary
000000 000000	000000000000000000000000000000000000000	0000 0000	000000	
PEP Formulations				

Problem Statement

Incremental 3D elastic-plastic stress-strain:

$$\frac{d\sigma_{ij}}{dt} = \left\{ D_{ijkl}^{el} - \frac{D_{ijmn}^{el} m_{mn} n_{pq} D_{pqkl}^{el}}{n_{rs} D_{rstu}^{el} m_{tu} - \xi_* r_*} \right\} \frac{d\epsilon_{kl}}{dt}$$

 Focus on 1D → a nonlinear ODE with random coefficient (material) and random forcing (ϵ)

$$\frac{d\sigma(x,t)}{dt} = \beta(\sigma(x,t), D^{el}(x), q(x), r(x); x, t) \frac{d\epsilon(x,t)}{dt}$$
$$= \eta(\sigma, D^{el}, q, r, \epsilon; x, t)$$

with initial condition $\sigma(0) = \sigma_0$

Motivation 000000 000000 Probabilistic Elasto–Plasticity

SEPFEM 0000 0000 Applications

Summary

PEP Formulations

Evolution of the Density $\rho(\sigma, t)$

- From each initial point in σ-space a trajectory starts out describing the corresponding solution of the stochastic process
- Movement of a cloud of initial points described by density ρ(σ, 0) in σ-space, is governed by the constitutive equation,

Stochastic Continuity (Liouville) Equation

phase density ρ of σ(x, t) varies in time according to a continuity Liouville equation (Kubo 1963):

$$\frac{\frac{\partial \rho(\sigma(x,t),t)}{\partial t}}{\frac{\partial \sigma}{\sigma}} = \frac{\frac{\partial \eta(\sigma(x,t), D^{el}(x), q(x), r(x), \epsilon(x,t))}{\partial \sigma} \rho[\sigma(x,t),t]}{\rho[\sigma(x,t),t]}$$

• with initial conditions $\rho(\sigma, 0) = \delta(\sigma - \sigma_0)$

Computational Geomechanics Group

Jeremić

Motivation	Probabilistic Elasto–Plasticity	SEPFEM	Applications	
000000 000000	0000000000	0000	000000	
PEP Formulations				

Ensemble Average form of Liouville Equation

Continuity equation written in ensemble average form (eg. cumulant expansion method (Kavvas and Karakas 1996)):

$$\begin{aligned} \frac{\partial \langle \rho(\sigma(\mathbf{x}_{t},t),t)\rangle}{\partial t} &= -\frac{\partial}{\partial \sigma} \left[\left\{ \left\langle \eta(\sigma(\mathbf{x}_{t},t), \mathcal{D}^{el}(\mathbf{x}_{t}), q(\mathbf{x}_{t}), r(\mathbf{x}_{t}), \epsilon(\mathbf{x}_{t},t)) \right\rangle \right. \\ &+ \int_{0}^{t} d\tau \operatorname{Cov}_{0} \left[\frac{\partial \eta(\sigma(\mathbf{x}_{t},t), \mathcal{D}^{el}(\mathbf{x}_{t}), q(\mathbf{x}_{t}), r(\mathbf{x}_{t}), \epsilon(\mathbf{x}_{t},t))}{\partial \sigma}; \\ &\left. \eta(\sigma(\mathbf{x}_{t-\tau},t-\tau), \mathcal{D}^{el}(\mathbf{x}_{t-\tau}), q(\mathbf{x}_{t-\tau}), r(\mathbf{x}_{t-\tau}), \epsilon(\mathbf{x}_{t-\tau},t-\tau) \right] \right\} \langle \rho(\sigma(\mathbf{x}_{t},t),t) \rangle \right] \\ &+ \frac{\partial^{2}}{\partial \sigma^{2}} \left[\left\{ \int_{0}^{t} d\tau \operatorname{Cov}_{0} \left[\eta(\sigma(\mathbf{x}_{t},t), \mathcal{D}^{el}(\mathbf{x}_{t}), q(\mathbf{x}_{t}), r(\mathbf{x}_{t}), \epsilon(\mathbf{x}_{t},t)); \right. \\ &\left. \eta(\sigma(\mathbf{x}_{t-\tau},t-\tau), \mathcal{D}^{el}(\mathbf{x}_{t-\tau}), q(\mathbf{x}_{t-\tau}), r(\mathbf{x}_{t-\tau}), \epsilon(\mathbf{x}_{t-\tau},t-\tau)) \right] \right\} \langle \rho(\sigma(\mathbf{x}_{t},t),t) \rangle \right] \end{aligned}$$

Summary

The Case for Probabilistic Elasto-Plasticity

Motivation	Probabilistic Elasto–Plasticity	SEPFEM
000000 000000	00000000000000000000000000000000000000	0000 0000
PEP Formulations		

Applications

Summary

Eulerian–Lagrangian FPK Equation

van Kampen's Lemma (van Kampen 1976) $\rightarrow < \rho(\sigma, t) >= P(\sigma, t)$, ensemble average of phase density is the probability density;

$$\begin{aligned} \frac{\partial P(\sigma(x_{t}, t), t)}{\partial t} &= -\frac{\partial}{\partial \sigma} \left[\left\{ \left\langle \eta(\sigma(x_{t}, t), D^{el}(x_{t}), q(x_{t}), r(x_{t}), \epsilon(x_{t}, t)) \right\rangle \right. \\ \left. + \int_{0}^{t} d\tau Cov_{0} \left[\frac{\partial \eta(\sigma(x_{t}, t), D^{el}(x_{t}), q(x_{t}), r(x_{t}), \epsilon(x_{t}, t))}{\partial \sigma}; \right. \\ \left. \eta(\sigma(x_{t-\tau}, t-\tau), D^{el}(x_{t-\tau}), q(x_{t-\tau}), r(x_{t-\tau}), \epsilon(x_{t-\tau}, t-\tau) \right] \right\} P(\sigma(x_{t}, t), t) \right] \\ + \left. \frac{\partial^{2}}{\partial \sigma^{2}} \left[\left\{ \int_{0}^{t} d\tau Cov_{0} \left[\eta(\sigma(x_{t}, t), D^{el}(x_{t}), q(x_{t}), r(x_{t}), \epsilon(x_{t}, t)); \right. \\ \left. \eta(\sigma(x_{t-\tau}, t-\tau), D^{el}(x_{t-\tau}), q(x_{t-\tau}), r(x_{t-\tau}), \epsilon(x_{t-\tau}, t-\tau)) \right] \right\} P(\sigma(x_{t}, t), t) \right] \end{aligned}$$

Computational Geomechanics Group

Jeremić

E–L FPK Equation

Advection-diffusion equation

$$\frac{\partial \boldsymbol{P}(\sigma, t)}{\partial t} = -\frac{\partial}{\partial \sigma} \left[\boldsymbol{N}_{(1)} \boldsymbol{P}(\sigma, t) - \frac{\partial}{\partial \sigma} \left\{ \boldsymbol{N}_{(2)} \boldsymbol{P}(\sigma, t) \right\} \right]$$

- Complete probabilistic description of response
- Solution PDF is second-order exact to covariance of time (exact mean and variance)
- It is deterministic equation in probability density space
- ► It is linear PDE in probability density space → simplifies the numerical solution process

Motivation
000000
000000

PEP Formulations

Probabilistic Elasto–Plasticity

SEPFEM 0000 0000 Applications

Summary

Template Solution of FPK Equation

► FPK diffusion–advection equation is applicable to any material model \rightarrow only the coefficients $N_{(1)}$ and $N_{(2)}$ are different for different material models

$$\frac{\partial \boldsymbol{P}(\sigma,t)}{\partial t} = -\frac{\partial}{\partial \sigma} \left[\boldsymbol{N}_{(1)} \boldsymbol{P}(\sigma,t) - \frac{\partial}{\partial \sigma} \left\{ \boldsymbol{N}_{(2)} \boldsymbol{P}(\sigma,t) \right\} \right] = -\frac{\partial \zeta}{\partial \sigma}$$

- Initial condition
 - Deterministic \rightarrow Dirac delta function $\rightarrow P(\sigma, 0) = \delta(\sigma)$
 - Random \rightarrow Any given distribution
- Boundary condition: Reflecting BC → conserves probability mass ζ(σ, t)|_{At Boundaries} = 0
- Finite Differences used for solution (among many others)

SEPFEM 0000 0000 Applications

Summary

PEP Formulations

Application of FPK equation to Material Models

- FPK equation is applicable to any incremental elastic-plastic material model
- Solution in terms of PDF, not a single value of stress
- Influence of initial condition on the PDF of stress
- Mean stress yielding or
- Probabilistic yielding

Motivation	Probabilistic Elasto–Plasticity	SEPFEM	Applications	Summary
000000 000000	0000000000 00000000000000	0000	000000	
Probabilistic Elast	ic-Plastic Response			

Outline

Motivation

Stochastic Systems: Historical Perspectives Uncertainties in Material

Probabilistic Elasto-Plasticity

PEP Formulations

Probabilistic Elastic-Plastic Response

Stochastic Elastic-Plastic Finite Element Method

SEPFEM Formulations SEPFEM Verification Example

Applications

Seismic Wave Propagation Through Uncertain Soils Probabilistic Analysis for Decision Making

Summary

Jeremić

Motivation	Probabilistic Elasto–Plasticity	SEPFEM	Applications	Summary
000000 000000	000000000000000000000000000000000000000	0000 0000	000000	
Probabilistic Elastic-Plas	stic Response			

Elastic Response with Random G

General form of elastic constitutive rate equation

$$\frac{d\sigma_{12}}{dt} = 2G\frac{d\epsilon_{12}}{dt}$$
$$= \eta(G, \epsilon_{12}; t)$$

Advection and diffusion coefficients of FPK equation

$$N_{(1)} = 2\frac{d\epsilon_{12}}{dt} < G >$$

$$N_{(2)} = 4t \left(\frac{d\epsilon_{12}}{dt}\right)^2 Var[G]$$

Motivation	Probabilistic Elasto–Plasticity	SEPFEM	Applications	Summary
000000 000000	000000000000000000000000000000000000000	0000	000000	
Probabilistic Elastic-Plastic Response				

Elastic Response with Random G

< G > = 2.5 MPa; Std. Deviation[G] = 0.5 MPa

Jeremić

Motivation	Probabilistic Elasto–Plasticity	SEPFEM	Applications	Summary
000000 000000	000000000000000000000000000000000000000	0000 0000	000000	
Probabilistic Elas	tic_Plastic Response			

Verification – Variable Transformation Method

Jeremić

Motivation	Probabilistic Elasto–Plasticity	SEPFEM	Applications	Summary
000000 000000	000000000000000000000000000000000000000	0000	000000	
Probabilistic Flas	tic_Plastic Response			

Modified Cam Clay Constitutive Model

$$\frac{d\sigma_{12}}{dt} = G^{ep} \frac{d\epsilon_{12}}{dt} = \eta(\sigma_{12}, G, M, e_0, p_0, \lambda, \kappa, \epsilon_{12}; t)$$
$$\eta = \left[2G - \frac{\left(36\frac{G^2}{M^4}\right)\sigma_{12}^2}{\frac{(1+e_0)p(2p-p_0)^2}{\kappa} + \left(18\frac{G}{M^4}\right)\sigma_{12}^2 + \frac{1+e_0}{\lambda-\kappa}pp_0(2p-p_0)} \right]$$

Advection and diffusion coefficients of FPK equation

$$N_{(1)}^{(i)} = \left\langle \eta^{(i)}(t) \right\rangle + \int_0^t d\tau \operatorname{cov} \left[\frac{\partial \eta^{(i)}(t)}{\partial t}; \eta^{(i)}(t-\tau) \right]$$
$$N_{(2)}^{(i)} = \int_0^t d\tau \operatorname{cov} \left[\eta^{(i)}(t); \eta^{(i)}(t-\tau) \right]$$

Jeremić

Motivation	Probabilistic Elasto–Plasticity	SEPFEM	Applications	Sumn
000000 000000	000000000000000000000000000000000000000	0000	000000	
Brobobilistic Elect	tia Plastia Paspanaa			

Low OCR Cam Clay with Random G, M and p_0

- Non-symmetry in probability distribution
- Difference between mean, mode and deterministic
- Divergence at critical state because *M* is uncertain

Computational Geomechanics Group

Jeremić

Motivation	Probabilistic Elasto–Plasticity	SEPFEM	Applications	Summary
000000 000000	000000000000000000000000000000000000000	0000	000000	
Probabilistic Flas	tic-Plastic Response			

Comparison of Low OCR Cam Clay at ϵ = 1.62 %

- None coincides with deterministic
- Some very uncertain, some very certain
- Either on safe or unsafe side

Motivation	Probabilistic Elasto-Plasticity	SEPFEM	Applications	Summ
000000	000000000000000000000000000000000000000	0000	000000	
Probabilistic Flast	tic-Plastic Response			

High OCR Cam Clay with Random *G* and *M*

Computational Geomechanics Group

Jeremić

Motivation	Probabilistic Elasto–Plasticity	SEPFEM	Applications	Summary
000000 000000	000000000000000000000000000000000000000	0000 0000	000000	
Probabilistic Elastic-Pla	stic Response			

Probabilistic Yielding

- ► Weighted elastic and elastic-plastic Solution $\partial P(\sigma, t) / \partial t = -\partial \left(N_{(1)}^w P(\sigma, t) - \partial \left(N_{(2)}^w P(\sigma, t) \right) / \partial \sigma \right) / \partial \sigma$
- Weighted advection and diffusion coefficients are then $N_{(1,2)}^w(\sigma) = (1 P[\Sigma_y \le \sigma])N_{(1)}^{el} + P[\Sigma_y \le \sigma]N_{(1)}^{el-pl}$

Cumulative Probability Density function (CDF) of the yield function

Motivation	Probabilistic Elasto–Plasticity	SEPFEM	Applications	Summary
000000 000000	0000000000 0000000000000	0000 0000	000000	
Probabilistic Elastic	-Plastic Response			

Transformation of a Bi–Linear (von Mises) Response

linear elastic - linear hardening plastic von Mises

Jeremić

Probabilistic Elastic-Plastic Response

SPT Based Determination of Shear Strength

Transformation relationship between SPT *N*-value and undrained shear strength, s_u (cf. Phoon and Kulhawy (1999B) Histogram of the residual (w.r.t the deterministic transformation equation) undrained strength, along with fitted probability density function

Summary

SPT Based Determination of Young's Modulus

Transformation relationship between SPT *N*-value and pressure-meter Young's modulus, *E* (cf. Phoon and Kulhawy (1999B))

Histogram of the residual (w.r.t the deterministic transformation equation) Young's modulus, along with fitted probability density function Motivation

Probabilistic Elasto–Plasticity

SEPFEN 0000 0000 Applications

Summary

Probabilistic Elastic-Plastic Response

Cyclic Response of Such Uncertain Material

Jeremić

Computational Geomechanics Group

G/G_{max} Response

Jeremić

Computational Geomechanics Group

Damping Response

Jeremić

Computational Geomechanics Group

Motivation	Probabilistic Elasto-Plasticity	SEPFEM	Applications
000000 000000	000000000000000000000000000000000000000	0000 0000	000000
SEPFEM Formula	itions		

Summary

Outline

Motivation

Stochastic Systems: Historical Perspectives Uncertainties in Material

Probabilistic Elasto-Plasticity

PEP Formulations Probabilistic Elastic–Plastic Response

Stochastic Elastic–Plastic Finite Element Method SEPFEM Formulations

SEPFEM Verification Example

Applications

Seismic Wave Propagation Through Uncertain Soils Probabilistic Analysis for Decision Making

Summary

Summary

Governing Equations & Discretization Scheme

Governing equations in geomechanics:

$$A\sigma = \phi(t); \quad Bu = \epsilon; \quad \sigma = D\epsilon$$

Discretization (spatial and stochastic) schemes

- ► Input random field material properties (D) → Karhunen–Loève (KL) expansion, optimal expansion, error minimizing property
- ► Unknown solution random field $(u) \rightarrow$ Polynomial Chaos (PC) expansion
- ► Deterministic spatial differential operators $(A \& B) \rightarrow$ Regular shape function method with Galerkin scheme

Jeremić

Motivation	Probabilistic Elasto-Plasticity	SEPFEM	Applications	
000000	0000000000 0000000000000	0000	000000 000000000	
SEPFEM Formula	tions			

Spectral Stochastic Elastic–Plastic FEM

 Minimizing norm of error of finite representation using Galerkin technique (Ghanem and Spanos 2003):

The Case for Probabilistic Elasto-Plasticity

Inside SEPFEM

- Explicit stochastic elastic–plastic finite element computations
- FPK probabilistic constitutive integration at Gauss integration points
- Increase in (stochastic) dimensions (KL and PC) of the problem
- Development of the probabilistic elastic-plastic stiffness tensor

Motivation	Probabilistic Elasto–Plasticity	SEPFEM	Applications	Summary
000000 000000	0000000000 0000000000000	0000 •000	000000 000000000	
SEPFEM Verification Ex	ample			

Outline

Motivation

Stochastic Systems: Historical Perspectives Uncertainties in Material

Probabilistic Elasto-Plasticity

PEP Formulations Probabilistic Elastic–Plastic Response

Stochastic Elastic-Plastic Finite Element Method

SEPFEM Formulations SEPFEM Verification Example

Applications

Seismic Wave Propagation Through Uncertain Soils Probabilistic Analysis for Decision Making

Summary

Motivation	Probabilistic Elasto-Plasticity	SEPFEM	Applications	Summary
000000 000000	000000000000000000000000000000000000000	0000	000000	

1–D Static Pushover Test Example

► Linear elastic model: < G >= 2.5 kPa, Var[G] = 0.15 kPa², correlation length for G = 0.3 m.

 Elastic-plastic material model, von Mises, linear hardening,
 < G >= 2.5 kPa,
 Var[G] = 0.15 kPa²,
 correlation length for G = 0.3 m,
 C_u = 5 kPa,
 C'_u = 2 kPa.

'FEM Verification Example

Mean and standard deviations of displacement at the top node, linear elastic material model, KL-dimension=2, order of PC=2.

Motivation	Probabilistic Elasto–Plasticity	SEPFEM	Applications	Summary
000000 000000	00000000000	0000 0000	000000	
SEPFEM Verification E	xample			

SEPFEM verification

Displacement at Top Node (mm)

Mean and standard deviations of displacement at the top node, von Mises elastic-plastic linear hardening material model, KL-dimension=2, order of PC=2.

Motivation	Probabilistic Elasto–Plasticity	SEPFEM	Applications	Summary
000000 000000	000000000000000000000000000000000000000	0000	000000000000000000000000000000000000000	
Saiamia Maya Br	production Through Uncortain Sails			

Outline

Motivation

Stochastic Systems: Historical Perspectives Uncertainties in Material

Probabilistic Elasto-Plasticity

PEP Formulations Probabilistic Elastic–Plastic Response

Stochastic Elastic–Plastic Finite Element Method

SEPFEM Formulations SEPFEM Verification Example

Applications

Seismic Wave Propagation Through Uncertain Soils

Probabilistic Analysis for Decision Making

Summary

Jeremić

Applications

- Stochastic elastic-plastic simulations of soils and structures
- Probabilistic inverse problems
- Geotechnical site characterization design
- Optimal material design

Seismic Wave Propagation through Stochastic Soil

- Soil as 12.5 m deep 1–D soil column (von Mises Material)
 - Properties (including testing uncertainty) obtained through random field modeling of CPT *q_T* ⟨*q_T*⟩ = 4.99 *MPa*; *Var*[*q_T*] = 25.67 *MPa*²;
 Cor. Length [*q_T*] = 0.61 *m*; Testing Error = 2.78 *MPa*²
- q_T was transformed to obtain G: $G/(1-\nu) = 2.9q_T$
 - ► Assumed transformation uncertainty = 5% ⟨G⟩ = 11.57MPa; Var[G] = 142.32MPa² Cor. Length [G] = 0.61m
- Input motions: modified 1938 Imperial Valley

Random Field Parameters from Site Data

Maximum likelihood estimates

Jeremić

Motivation 000000 000000 Probabilistic Elasto–Plasticity

SEPFEN

Applications

Summary

Seismic Wave Propagation Through Uncertain Soils

"Uniform" CPT Site Data

Jeremić

Computational Geomechanics Group

Seismic Wave Propagation through Stochastic Soil

$Mean \pm Standard Deviation$

Jeremić

Motivation	Probabilistic Elasto–Plasticity	SEPFEM	Applications	Summary
000000	000000000000000000000000000000000000000	0000	000000 ●00000000	
Probabilistic Analysis for Decision Making				

Outline

Motivation

Stochastic Systems: Historical Perspectives Uncertainties in Material

Probabilistic Elasto-Plasticity

PEP Formulations Probabilistic Elastic–Plastic Response

Stochastic Elastic-Plastic Finite Element Method

SEPFEM Formulations SEPFEM Verification Example

Applications

Seismic Wave Propagation Through Uncertain Soils

Probabilistic Analysis for Decision Making

Summary

Motivation	Probabilistic Elasto–Plasticity	SEPFEM	Applications	Summary	
000000 000000	000000000000000000000000000000000000000	0000	000000		
nele elettrate. An electric fra De staten Melden					

Three Approaches to Modeling

- Do nothing about site characterization (rely on experience): conservative guess of soil data, COV = 225%, correlation length = 12m.
- Do better than standard site characterization: COV = 103%, correlation length = 0.61m)
- Improve site characterization if probabilities of exceedance are unacceptable!

The Case for Probabilistic Elasto-Plasticity

Motivation	Probabilistic Elasto–Plasticity	SEPFEM	Applications	Su
000000	0000000000	0000	000000	
			000000000	

Evolution of Mean \pm SD for Guess Case

Motivation	Probabilistic Elasto-Plasticity	SEPFEM	Applications	Summa
000000 000000	000000000000000000000000000000000000000	0000	000000	

Evolution of Mean \pm SD for Real Data Case

Motivation	Probabilistic Elasto–Plasticity	SEPFEM	Applications	Summa
000000	0000000000	0000	000000	
000000	000000000000000	0000	000000000	

Full PDFs for Real Data Case

Jeremić

Motivation	Probabilistic Elasto–Plasticity	SEPFEM	Applications	Summary	
000000 000000	000000000000000000000000000000000000000	0000 0000	000000		
Probabilistic Analysis for Decision Making					

Example: PDF at 6 s

Jeremić

Motivation	Probabilistic Elasto–Plasticity	SEPFEM	Applications	Summary
000000 000000	000000000000000000000000000000000000000	0000 0000	000000	
Probabilistic Analysis for Decision Making				

Example: CDF at 6 s

Jeremić

Computational Geomechanics Group

Motivation	Probabilistic Elasto–Plasticity	SEPFEM	Applications	Summa
000000	0000000000	0000	000000	
000000	000000000000000000000000000000000000000	0000	0000000000	

Probability of Exceedance of 20cm

Motivation	Probabilistic Elasto–Plasticity	SEPFEM	Applications	Summary
000000 000000	000000000000000000000000000000000000000	0000	000000 000000000	

Probability of Exceedance of 50cm

Jeremić

Computational Geomechanics Group

Motivation	Probabilistic Elasto–Plasticity	SEPFEM	Applications	
000000	0000000000	0000	000000	
000000	000000000000000000000000000000000000000	0000	000000000	

Probabilities of Exceedance vs. Displacements

Summary

- Behavior of materials is probably probabilistic!
- Technical developments are available and are being refined
- Human nature: how much do you want to know about potential problem?