
Motivation Probabilistic Elasto–Plasticity SEPFEM Applications Summary

The Case for Probabilistic Elasto–Plasticity

Boris Jeremić
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Stochastic Systems: Historical Perspectives

Failure Mechanisms for Geomaterials

Soil: Inside Failure of "Uniform" MGM Specimen
(After Swanson et al. 1998)Jeremić Computational Geomechanics Group
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Stochastic Systems: Historical Perspectives

Personal Motivation

I Probabilistic fish counting

I Williams’ DEM simulations, differential displacement
vortices

I SFEM round table

I Kavvas’ probabilistic hydrology

Jeremić Computational Geomechanics Group

The Case for Probabilistic Elasto–Plasticity



Motivation Probabilistic Elasto–Plasticity SEPFEM Applications Summary

Stochastic Systems: Historical Perspectives

Types of Uncertainties
I Epistemic uncertainty - due to lack of knowledge

I Can be reduced by collecting more data
I Mathematical tools are not well developed
I trade-off with aleatory uncertainty

I Aleatory uncertainty - inherent variation of physical system
I Can not be reduced
I Has highly developed mathematical tools
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Stochastic Systems: Historical Perspectives

Ergodicity
I Exchange ensemble averages for time averages

I Is soil elasto-plasticity ergodic?
I Can soil elastic–plastic statistical properties be obtained by

temporal averaging?
I Will soil elastic–plastic statistical properties "renew" at each

occurrence?
I Are soil elastic–plastic statistical properties statistically

independent?

I Claim in literature that structural nonlinear behavior is
non–ergodic while earthquake characteristics are (?!)

I However, earthquake characteristics is representing
mechanics (fault slip) on a different scale...
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Stochastic Systems: Historical Perspectives

Historical Overview
I Brownian motion, Langevin equation → PDF governed by

simple diffusion Eq. (Einstein 1905)

I With external forces → Fokker-Planck-Kolmogorov (FPK)
for the PDF (Kolmogorov 1941)

I Approach for random forcing → relationship between the
autocorrelation function and spectral density function
(Wiener 1930)

I Approach for random coefficient → Functional integration
approach (Hopf 1952), Averaged equation approach
(Bharrucha-Reid 1968), Numerical approaches, Monte
Carlo method
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Uncertainties in Material

Material Behavior Inherently Uncertain

I Spatial
variability

I Point-wise
uncertainty,
testing
error,
transformation
error

(Mayne et al. (2000)
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Uncertainties in Material

Motivation

Typical Coefficients of Variation of Different Soil Properties

(After Lacasse and Nadim 1996)
Jeremić Computational Geomechanics Group
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Uncertainties in Material

Soil Uncertainties and Quantification

I Natural variability of soil deposit (Fenton 1999)
I Function of soil formation process

I Testing error (Stokoe et al. 2004)
I Imperfection of instruments
I Error in methods to register quantities

I Transformation error (Phoon and Kulhawy 1999)
I Correlation by empirical data fitting (e.g. CPT data →

friction angle etc.)
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Uncertainties in Material

Probabilistic Material (Soil Site) Characterization

I Ideal: complete probabilistic site characterization
I Large (physically large but not statistically) amount of data

I Site specific mean and coefficient of variation (COV)
I Covariance structure from similar sites (e.g. Fenton 1999)

I Moderate amount of data → Bayesian updating (e.g.
Phoon and Kulhawy 1999, Baecher and Christian 2003)

I Minimal data: general guidelines for typical sites and test
methods (Phoon and Kulhawy (1999))

I COVs and covariance structures of inherent variability
I COVs of testing errors and transformation uncertainties.
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Uncertainties in Material

Recent State-of-the-Art
I Governing equation

I Dynamic problems → Mü + Cü + Ku = φ
I Static problems → Ku = φ

I Existing solution methods
I Random r.h.s (external force random)

I FPK equation approach
I Use of fragility curves with deterministic FEM (DFEM)

I Random l.h.s (material properties random)
I Monte Carlo approach with DFEM → CPU expensive
I Perturbation method → a linearized expansion! Error

increases as a function of COV
I Spectral method → developed for elastic materials so far

I New developments for elasto–plastic applications
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PEP Formulations

Uncertainty Propagation through Constitutive Eq.

I Incremental el–pl constitutive equation
dσij

dt
= Dijkl

dεkl

dt

Dijkl =


Del

ijkl for elastic

Del
ijkl −

Del
ijmnmmnnpqDel

pqkl

nrsDel
rstumtu − ξ∗r∗

for elastic–plastic
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PEP Formulations

Previous Work
I Linear algebraic or differential equations → Analytical

solution:
I Variable Transf. Method (Montgomery and Runger 2003)
I Cumulant Expansion Method (Gardiner 2004)

I Nonlinear differential equations
(elasto-plastic/viscoelastic-viscoplastic):

I Monte Carlo Simulation (Schueller 1997, De Lima et al
2001, Mellah et al. 2000, Griffiths et al. 2005...)
→ accurate, very costly

I Perturbation Method (Anders and Hori 2000, Kleiber and
Hien 1992, Matthies et al. 1997)
→ first and second order Taylor series expansion about
mean - limited to problems with small C.O.V. and inherits
"closure problem"
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PEP Formulations

Problem Statement

I Incremental 3D elastic-plastic stress–strain:

dσij

dt
=

{
Del

ijkl −
Del

ijmnmmnnpqDel
pqkl

nrsDel
rstumtu − ξ∗r∗

}
dεkl

dt

I Focus on 1D → a nonlinear ODE with random coefficient
(material) and random forcing (ε)

dσ(x , t)
dt

= β(σ(x , t),Del(x),q(x), r(x); x , t)
dε(x , t)

dt
= η(σ,Del ,q, r , ε; x , t)

with initial condition σ(0) = σ0
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PEP Formulations

Evolution of the Density ρ(σ, t)

I From each initial point in
σ-space a trajectory
starts out describing
the corresponding solution
of the stochastic process

I Movement of a cloud of initial
points described by density
ρ(σ,0) in σ-space,
is governed by the
constitutive equation,

t

P(  )

σ
σ
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PEP Formulations

Stochastic Continuity (Liouville) Equation

I phase density ρ of σ(x , t) varies in time according to a
continuity Liouville equation (Kubo 1963):

∂ρ(σ(x , t), t)
∂t

=

−∂η(σ(x , t),Del(x),q(x), r(x), ε(x , t))
∂σ

ρ[σ(x , t), t ]

I with initial conditions ρ(σ,0) = δ(σ − σ0)
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PEP Formulations

Ensemble Average form of Liouville Equation
Continuity equation written in ensemble average form (eg.
cumulant expansion method (Kavvas and Karakas 1996)):

∂ 〈ρ(σ(xt , t), t)〉
∂t

= − ∂

∂σ

»fi
η(σ(xt , t), Del(xt), q(xt), r(xt), ε(xt , t))

fl
+

Z t

0
dτCov0

»
∂η(σ(xt , t), Del(xt), q(xt), r(xt), ε(xt , t))

∂σ
;

η(σ(xt−τ , t − τ), Del(xt−τ ), q(xt−τ ), r(xt−τ ), ε(xt−τ , t − τ)

–ff
〈ρ(σ(xt , t), t)〉

–
+

∂2

∂σ2

»Z t

0
dτCov0

»
η(σ(xt , t), Del(xt), q(xt), r(xt), ε(xt , t));

η(σ(xt−τ , t − τ), Del(xt−τ ), q(xt−τ ), r(xt−τ ), ε(xt−τ , t − τ))

– ff
〈ρ(σ(xt , t), t)〉

–
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PEP Formulations

Eulerian–Lagrangian FPK Equation
van Kampen’s Lemma (van Kampen 1976) → < ρ(σ, t) >= P(σ, t),
ensemble average of phase density is the probability density;

∂P(σ(xt , t), t)
∂t

= − ∂

∂σ

»fi
η(σ(xt , t), Del(xt), q(xt), r(xt), ε(xt , t))

fl
+

Z t

0
dτCov0

»
∂η(σ(xt , t), Del(xt), q(xt), r(xt), ε(xt , t))

∂σ
;

η(σ(xt−τ , t − τ), Del(xt−τ ), q(xt−τ ), r(xt−τ ), ε(xt−τ , t − τ)

–ff
P(σ(xt , t), t)

–
+

∂2

∂σ2

»Z t

0
dτCov0

»
η(σ(xt , t), Del(xt), q(xt), r(xt), ε(xt , t));

η(σ(xt−τ , t − τ), Del(xt−τ ), q(xt−τ ), r(xt−τ ), ε(xt−τ , t − τ))

– ff
P(σ(xt , t), t)

–
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PEP Formulations

E–L FPK Equation

I Advection-diffusion equation

∂P(σ, t)
∂t

= − ∂

∂σ

[
N(1)P(σ, t)− ∂

∂σ

{
N(2)P(σ, t)

}]
I Complete probabilistic description of response
I Solution PDF is second-order exact to covariance of time

(exact mean and variance)
I It is deterministic equation in probability density space
I It is linear PDE in probability density space → simplifies

the numerical solution process

Jeremić Computational Geomechanics Group
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PEP Formulations

Template Solution of FPK Equation
I FPK diffusion–advection equation is applicable to any

material model → only the coefficients N(1) and N(2) are
different for different material models

∂P(σ, t)
∂t

= − ∂

∂σ

[
N(1)P(σ, t)− ∂

∂σ

{
N(2)P(σ, t)

}]
= −∂ζ

∂σ

I Initial condition
I Deterministic → Dirac delta function → P(σ,0) = δ(σ)
I Random → Any given distribution

I Boundary condition: Reflecting BC → conserves
probability mass ζ(σ, t)|At Boundaries = 0

I Finite Differences used for solution (among many others)

Jeremić Computational Geomechanics Group
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PEP Formulations

Application of FPK equation to Material Models

I FPK equation is applicable to any incremental
elastic–plastic material model

I Solution in terms of PDF, not a single value of stress

I Influence of initial condition on the PDF of stress

I Mean stress yielding or

I Probabilistic yielding

Jeremić Computational Geomechanics Group
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Probabilistic Elastic–Plastic Response

Elastic Response with Random G
I General form of elastic constitutive rate equation

dσ12

dt
= 2G

dε12

dt
= η(G, ε12; t)

I Advection and diffusion coefficients of FPK equation

N(1) = 2
dε12

dt
< G >

N(2) = 4t
(

dε12

dt

)2

Var [G]
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Probabilistic Elastic–Plastic Response

Elastic Response with Random G
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Probabilistic Elastic–Plastic Response

Verification – Variable Transformation Method
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Probabilistic Elastic–Plastic Response

Modified Cam Clay Constitutive Model
dσ12

dt
= Gep dε12

dt
= η(σ12,G,M,e0,p0, λ, κ, ε12; t)

η =

2G −

(
36

G2

M4

)
σ2

12

(1 + e0)p(2p − p0)
2

κ
+

(
18

G
M4

)
σ2

12 +
1 + e0

λ− κ
pp0(2p − p0)


Advection and diffusion coefficients of FPK equation

N(i)
(1) =

〈
η(i)(t)

〉
+

∫ t

0
dτcov

[
∂η(i)(t)
∂t

; η(i)(t − τ)

]

N(i)
(2) =

∫ t

0
dτcov

[
η(i)(t); η(i)(t − τ)

]
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Probabilistic Elastic–Plastic Response

Low OCR Cam Clay with Random G, M and p0

I Non-symmetry in
probability
distribution

I Difference
between
mean, mode and
deterministic

I Divergence at
critical state
because M is
uncertain
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Probabilistic Elastic–Plastic Response

Comparison of Low OCR Cam Clay at ε = 1.62 %
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I None coincides with deterministic
I Some very uncertain, some very certain
I Either on safe or unsafe side
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Probabilistic Elastic–Plastic Response

High OCR Cam Clay with Random G and M

I Large non-symmetry
in probability
distribution

I Significant
differences in
mean, mode,
and deterministic

I Divergence at
critical state,
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Probabilistic Elastic–Plastic Response

Probabilistic Yielding

I Weighted elastic and elastic–plastic Solution
∂P(σ, t)/∂t = −∂

(
Nw

(1)P(σ, t)− ∂
(

Nw
(2)P(σ, t)

)
/∂σ

)
/∂σ

I Weighted advection and diffusion coefficients are then
Nw

(1,2)(σ) = (1− P[Σy ≤ σ])Nel
(1) + P[Σy ≤ σ]Nel−pl

(1)

I Cumulative Probability Density function (CDF) of the yield
function
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Probabilistic Elastic–Plastic Response

Transformation of a Bi–Linear (von Mises) Response
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Probabilistic Elastic–Plastic Response

SPT Based Determination of Shear Strength
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Probabilistic Elastic–Plastic Response

SPT Based Determination of Young’s Modulus
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Probabilistic Elastic–Plastic Response

Cyclic Response of Such Uncertain Material
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Jeremić Computational Geomechanics Group

The Case for Probabilistic Elasto–Plasticity



Motivation Probabilistic Elasto–Plasticity SEPFEM Applications Summary

Probabilistic Elastic–Plastic Response

G/Gmax Response
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Probabilistic Elastic–Plastic Response

Damping Response
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SEPFEM Formulations

Governing Equations & Discretization Scheme

I Governing equations in geomechanics:

Aσ = φ(t); Bu = ε; σ = Dε

I Discretization (spatial and stochastic) schemes
I Input random field material properties (D) →

Karhunen–Loève (KL) expansion, optimal expansion, error
minimizing property

I Unknown solution random field (u) → Polynomial Chaos
(PC) expansion

I Deterministic spatial differential operators (A & B) →
Regular shape function method with Galerkin scheme
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SEPFEM Formulations

Spectral Stochastic Elastic–Plastic FEM

I Minimizing norm of error of finite representation using
Galerkin technique (Ghanem and Spanos 2003):

N∑
n=1

Kmndni +
N∑

n=1

P∑
j=0

dnj

M∑
k=1

CijkK ′
mnk = 〈Fmψi [{ξr}]〉

Kmn =

∫
D

BnDBmdV K ′
mnk =

∫
D

Bn
√
λkhkBmdV

Cijk =
〈
ξk (θ)ψi [{ξr}]ψj [{ξr}]

〉
Fm =

∫
D
φNmdV
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SEPFEM Formulations

Inside SEPFEM

I Explicit stochastic elastic–plastic finite element
computations

I FPK probabilistic constitutive integration at Gauss
integration points

I Increase in (stochastic) dimensions (KL and PC) of the
problem

I Development of the probabilistic elastic–plastic stiffness
tensor
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SEPFEM Verification Example
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SEPFEM Verification Example

1–D Static Pushover Test Example

I Linear elastic model:
< G >= 2.5 kPa,
Var [G] = 0.15 kPa2,
correlation length for G = 0.3 m.

I Elastic–plastic material model,
von Mises, linear hardening,
< G >= 2.5 kPa,
Var [G] = 0.15 kPa2,
correlation length for G = 0.3 m,
Cu = 5 kPa,
C

′
u = 2 kPa.
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SEPFEM Verification Example

Linear Elastic FEM Verification
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Mean (MC)

Standard Deviations (SFEM)

Mean and standard deviations of displacement at the top node,
linear elastic material model,
KL-dimension=2, order of PC=2.

Jeremić Computational Geomechanics Group

The Case for Probabilistic Elasto–Plasticity



Motivation Probabilistic Elasto–Plasticity SEPFEM Applications Summary

SEPFEM Verification Example

SEPFEM verification

1 2 3 4 5 6 7
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Standard Deviations (SFEM)
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Mean (MC)

Mean and standard deviations of displacement at the top node,
von Mises elastic-plastic linear hardening material model,
KL-dimension=2, order of PC=2.
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Seismic Wave Propagation Through Uncertain Soils

Applications

I Stochastic elastic–plastic simulations of soils and
structures

I Probabilistic inverse problems

I Geotechnical site characterization design

I Optimal material design
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Seismic Wave Propagation Through Uncertain Soils

Seismic Wave Propagation through Stochastic Soil

I Soil as 12.5 m deep 1–D soil column (von Mises Material)
I Properties (including testing uncertainty) obtained through

random field modeling of CPT qT
〈qT 〉 = 4.99 MPa; Var [qT ] = 25.67 MPa2;
Cor. Length [qT ] = 0.61 m; Testing Error = 2.78 MPa2

I qT was transformed to obtain G: G/(1− ν) = 2.9qT

I Assumed transformation uncertainty = 5%
〈G〉 = 11.57MPa; Var [G] = 142.32MPa2

Cor. Length [G] = 0.61m

I Input motions: modified 1938 Imperial Valley
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Seismic Wave Propagation Through Uncertain Soils

Random Field Parameters from Site Data
I Maximum likelihood estimates

Typical CPT qT

Finite Scale

Fractal
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Seismic Wave Propagation Through Uncertain Soils

"Uniform" CPT Site Data
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Seismic Wave Propagation Through Uncertain Soils

Seismic Wave Propagation through Stochastic Soil
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Probabilistic Analysis for Decision Making
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Probabilistic Analysis for Decision Making

Three Approaches to Modeling

I Do nothing about site characterization (rely on
experience): conservative guess of soil data,
COV = 225%, correlation length = 12m.

I Do better than standard site characterization:
COV = 103%, correlation length = 0.61m)

I Improve site characterization if probabilities of exceedance
are unacceptable!
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Probabilistic Analysis for Decision Making

Evolution of Mean ± SD for Guess Case
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Probabilistic Analysis for Decision Making

Evolution of Mean ± SD for Real Data Case
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Probabilistic Analysis for Decision Making

Full PDFs for Real Data Case
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Probabilistic Analysis for Decision Making

Example: PDF at 6 s
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Probabilistic Analysis for Decision Making

Example: CDF at 6 s
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Probabilistic Analysis for Decision Making

Probability of Exceedance of 20cm
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Probabilistic Analysis for Decision Making

Probability of Exceedance of 50cm
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Probabilistic Analysis for Decision Making

Probabilities of Exceedance vs. Displacements
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Summary

I Behavior of materials is probably probabilistic!

I Technical developments are available and are being refined

I Human nature: how much do you want to know about
potential problem?
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