Examples of Energy Dissipation

Summary

Directing Energy Dissipation in Earthquake-Soil-Structure Systems

Boris Jeremić, Nima Tafazzoli, Mahdi Taiebat, Guanzhou Jie

Department of Civil and Environmental Engineering University of California, Davis

CompDyn09

Boris Jeremić

Computational Geomechanics Group UCDAVIS

Examples of Energy Dissipation

Outline

Motivation

Modeling and Simulation

Seismic Energy Input Seismic Energy Dissipation

Examples of Energy Dissipation

Use of Soft Soil Use of Liquefaction

Summary

Boris Jeremić

Computational Geomechanics Group UCDAVIS

Motivation

- Improving seismic design for infrastructure objects
- Use of high fidelity numerical models in analyzing seismic behavior of soil-structure systems
- Accurately (high fidelity modeling and simulations) following the flow of seismic energy in the soil-structure system
- Directing, in space and time, seismic energy flow in the soil-structure system

Hypothesis

- Interplay of Earthquake with Soil and Structure plays major role in (catastrophic) failures (and successes).
- Timing and spatial location of energy dissipation determines location and amount of damage.
- If timing and spatial location of energy dissipation can be controlled, we could optimize soil-structure systems for
 - Safety and
 - Economy

Examples of Energy Dissipation

Motivation

First Published Work on Soil–Structure Interaction

- Professor Kyoji Suyehiro
- Ship engineer (Professor of Naval Arch. at U. of Tokyo),
- Was in Tokyo during Great Kantō earthquake (11:58am(7.5), 12:01pm(7.3), 12.03pm(7.2) (shaking until 12:08pm), 1st. Sept. 1923)
- Saw earthquake surface waves travel and buildings sway
- Founding Director of the Earthquake Engineering Research Institute Univ. of Tokyo),
- Records shows 4× (four) more damage to soft wooden buildings on soft ground

Examples of Energy Dissipation

Motivation

Northridge Example

Boris Jeremić

Computational Geomechanics Group UCDAVIS

Modeling and Simulation

Examples of Energy Dissipation

Summary

Seismic Energy Input

Outline

Motivation

Modeling and Simulation Seismic Energy Input Seismic Energy Dissipation

Examples of Energy Dissipation Use of Soft Soil Use of Liquefaction

Summary

Boris Jeremić

Computational Geomechanics Group UCDAVIS

Examples of Energy Dissipation

Summary

Seismic Energy Input

Seismic Energy at the Source

- Large energy releases,
 - Northridge, 1994, $M_{Richter} = 6.7, E_r = 6.8 \times 10^{16} J$
 - Loma Prieta, 1989, $M_{Richter} = 6.9, E_r = 1.1 \times 10^{17} J$
 - Sumatra-Andaman, 2004, $M_{Richter} = 9.3$, $E_r = 4.8 \times 10^{20} J$
 - ▶ Valdivia, Chile, 1960, $M_{Richter} = 9.5, E_r = 7.5 \times 10^{20} J$
 - Rhodes, 2008, $M_{Richter} = 6.5, E_r = 2.4 \times 10^{16} J$
- ► Part that energy is radiated as waves (≈ 1.6 × 10⁻⁵) and makes it to the surface
- For comparison, specific energy of TNT is $4.2 \times 10^6 J/kg$.
- Rhodes earthquake was $\approx 0.1 kt$.

Boris Jeremić

Modeling and Simulation

Examples of Energy Dissipation

Summary

Seismic Energy Input

Seismic Energy and the SFS System

 Kinetic energy flux through closed surface Γ includes both incoming and outgoing waves (using Domain Reduction Method by Bielak et al.)

$$E_{flux} = \left[0; -M_{be}^{\Omega+}\ddot{u}_{e}^{0} - K_{be}^{\Omega+}u_{e}^{0}; M_{eb}^{\Omega+}\ddot{u}_{b}^{0} + K_{eb}^{\Omega+}u_{b}^{0}\right]_{i} \times u_{i}$$

- Alternatively, $E_{flux} = \rho Ac \int_0^t \dot{u}_i^2 dt$
- Outgoing kinetic energy is obtained from outgoing wave field (*w_i*, in DRM)
- Incoming kinetic energy is then the difference.

Modeling and Simulation

Examples of Energy Dissipation

Summary

Seismic Energy Dissipation

Outline

Motivation

Modeling and Simulation

Seismic Energy Input Seismic Energy Dissipation

Examples of Energy Dissipation Use of Soft Soil Use of Liquefaction

Summary

Boris Jeremić

Computational Geomechanics Group UCDAVIS

Examples of Energy Dissipation

Seismic Energy Dissipation

Seismic Energy Dissipation for <u>Soil</u>–Structure Systems

- Mechanical dissipation outside of SFS domain:
 - wave reflection
 - SFS system oscillation radiation
- Mechanical dissipation/conversion inside SFS domain:
 - plasticity of soil (different subdomains)
 - viscous coupling of porous solid with pore fluid (air, water)
 - plasticity/damage of the structure (different parts)
 - viscous coupling of structure with surrounding fluids
 - ▶ potential ↔ kinetic energy
- Numerical energy dissipation/production

Modeling and Simulation

Examples of Energy Dissipation

Summary

Seismic Energy Dissipation

Energy Dissipation by Plasticity

• Plastic work (
$$W = \int \sigma_{ij} d\epsilon_{ij}^{pl}$$
)

Energy dissipation capacity for different soils

Boris Jeremić

Computational Geomechanics Group UCDAVIS

Modeling and Simulation

Examples of Energy Dissipation

Summary

Seismic Energy Dissipation

Energy Disipation by Viscous Coupling

- Viscous coupling of porous solid and fluid
- Energy loss per unit volume is $E_{vc} = n^2 k^{-1} (\dot{U}_i \dot{u}_i)^2$
- Natural in u p U formulation:

$$\begin{bmatrix} (M_{s})_{KijL} & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & (M_{f})_{KijL} \end{bmatrix} \begin{bmatrix} \ddot{\overline{u}}_{Lj} \\ \ddot{\overline{p}}_{N} \\ \ddot{\overline{u}}_{Lj} \end{bmatrix} + \begin{bmatrix} (C_{1})_{KijL} & 0 & -(C_{2})_{KijL} \\ 0 & 0 & 0 \\ -(C_{2})_{LijK} & 0 & (C_{3})_{KijL} \end{bmatrix} \begin{bmatrix} \dot{\overline{u}}_{Lj} \\ \dot{\overline{p}}_{N} \\ \dot{\overline{u}}_{Lj} \end{bmatrix} \\ + \begin{bmatrix} (K^{EP})_{KijL} & -(G_{1})_{KiM} & 0 \\ -(G_{1})_{LjM} & -P_{MN} & -(G_{2})_{LjM} \\ 0 & -(G_{2})_{KiL} & 0 \end{bmatrix} \begin{bmatrix} \overline{u}_{Lj} \\ \overline{p}_{M} \\ \overline{\overline{u}}_{Lj} \end{bmatrix} = \begin{bmatrix} \overline{f}_{Ki}^{solid} \\ 0 \\ \overline{f}_{Ki}^{fluid} \end{bmatrix} \\ (C_{(1,2,3)})_{KijL} = \int_{\Omega} N_{K}^{(u,u,U)} n^{2} k_{ij}^{-1} N_{L}^{(u,U,U)} d\Omega$$

Computational Geomechanics Group UCDAVIS

Boris Jeremić

Examples of Energy Dissipation

Summary

Seismic Energy Dissipation

Numerical Energy Dissipation

- Newmark and Hilber–Hughes–Taylor can be made non–dissipative for elastic system α = 0.0. β = 0.25; γ = 0.5.
- Or dissipative (for elastic) for higher frequency modes:
 - N: $\gamma \ge 0.5$, $\beta = 0.25(\gamma + 0.5)^2$,
 - ► HHT: $-0.33 \le \alpha \le 0$, $\gamma = 0.5(1 2\alpha)$, $\beta = 0.25(1 \alpha)^2$
- For nonlinear problems, energy cannot be maintained
 - Energy dissipation for steps with reduction of stiffness
 - Energy production for steps with increase of stiffness

Boris Jeremić

Computational Geomechanics Group UCDAVIS

Examples of Energy Dissipation

Summary

Use of Soft Soil

Outline

Motivation

Nodeling and Simulation Seismic Energy Input Seismic Energy Dissipation

Examples of Energy Dissipation Use of Soft Soil Use of Liquefaction

Summary

Boris Jeremić

Computational Geomechanics Group UCDAVIS

Examples of Energy Dissipation

Summary

Use of Soft Soil

Earthquake-Soil-Bridge System

- Inelastic soils (el-pl, Armstrong-Frederick, stiff and soft), inelastic structure (columns), inelastic piles, DRM for seismic input,
- Construction process
- Deconvolution osurface ground motions
- No artificial damping, only plastic dissipation and radiation
- Plastic Domain Decompisition Method for parallel computing
- 1.6 M DOFs (15cm element size)

Computational Geomechanics Group UCDAVIS

Boris Jeremić

Examples of Energy Dissipation

Use of Soft Soil

Northridge and Kocaeli Input Motions

Boris Jeremić

Computational Geomechanics Group UCDAVIS

Modeling and Simulation

Examples of Energy Dissipation

Summary

Use of Soft Soil

Northridge Energy: Strain (dissipated) and Kinetic

Boris Jeremić

Computational Geomechanics Group UCDAVIS

Modeling and Simulation

Examples of Energy Dissipation

Use of Soft Soil

Kocaeli Energy: Strain (dissipated) and Kinetic

Boris Jeremić

Computational Geomechanics Group UCDAVIS

Examples of Energy Dissipation

Use of Liquefaction

Outline

Motivation

Nodeling and Simulation Seismic Energy Input Seismic Energy Dissipation

Examples of Energy Dissipation Use of Soft Soil Use of Liquefaction

Summary

Boris Jeremić

Computational Geomechanics Group UCDAVIS

Examples of Energy Dissipation

Summary

Use of Liquefaction

Uniform and Layered Soils

Boris Jeremić

Computational Geomechanics Group UCDAVIS

Examples of Energy Dissipation

Use of Liquefaction

Acceleration Time History

Boris Jeremić

Computational Geomechanics Group UCDAVIS

Examples of Energy Dissipation

Summary

Use of Liquefaction

Excess Pore Pressure Ratio

Boris Jeremić

Computational Geomechanics Group UCDAVIS

Modeling and Simulation

Examples of Energy Dissipation

Use of Liquefaction

Plastic Energy Dissipation in Uniform Soils

Boris Jeremić

Computational Geomechanics Group UCDAVIS

Modeling and Simulation

Examples of Energy Dissipation

Use of Liquefaction

Plastic Energy Dissipation in Layered Soils

Boris Jeremić

Computational Geomechanics Group UCDAVIS

Examples of Energy Dissipation

Summary

Use of Liquefaction

Kinetic Energy at the Top

Boris Jeremić

Computational Geomechanics Group UCDAVIS

Examples of Energy Dissipation

Use of Liquefaction

Void Ratio Variation (Potential Energy)

Boris Jeremić

Computational Geomechanics Group UCDAVIS

Boris Jeremić

Summary

- Interplay of Earthquake, Soil and Structure plays a major role in catastrophic failures and great successes
- Opportunity to improve design: following the flow of seismic energy in the soil-structure systems
- Directing in space and time, seismic energy flow in the soil-structure system might/will lead to increase in safety and economy

Examples of Energy Dissipation

Summary

Colossus of Rhodes: What if?

Boris Jeremić

Computational Geomechanics Group UCDAVIS