Probabilistic Elasto-Plasticity

SSEPFEM

Applications

Summary and Future

Simulations in Geomechanics: The Issue of Uncertainty

Boris Jeremić

University of California, Davis

Jeremić

Computational Geomechanics Group

Motivation	Probabilistic Elasto–Plasticity	SSEPFEM	Applications	Summary and Future
0000000	000000	0000 00000	00000	

Outline

Motivation

The Need for Simulations in (Geo-) Mechanics

Uncertain Geomaterials

Probabilistic Elasto-Plasticity

PEP Formulation Probabilistic Elastic–Plastic Response

Stochastic Elastic-Plastic Finite Element Method

SSEPFEM Formulation SSEPFEM Example

Applications

Seismic Wave Propagation Through Uncertain Soils Probabilistic Analysis for Decision Making

Summary and Future

Motivation ●0000000 ○00000	Probabilistic Elasto–Plasticity	SSEPFEM 0000 00000	Applications	Summary and Future
The Need for Simulat	ions in (Geo-) Mechanics			

Outline

Motivation

The Need for Simulations in (Geo-) Mechanics

Uncertain Geomaterials

Probabilistic Elasto-Plasticity

PEP Formulation

Probabilistic Elastic-Plastic Response

Stochastic Elastic-Plastic Finite Element Method

- SSEPFEM Formulation
- SSEPFEM Example

Applications

Seismic Wave Propagation Through Uncertain Soils Probabilistic Analysis for Decision Making

Summary and Future

Motivation	Probabilistic Elasto–Plasticity	SSEPFEM	Applications	Summary and
0000000 000000	000000	0000 00000	00000	

The Need for Simulations in (Geo-) Mechanics

Numerical Simulation in Support of Design!

Practical design experience

Design of concrete and rock dams, bridges (YU, IR, USA) Design of residential and industrial buildings (SUI, SA) Design of buildings, tunnels, oil exploration equipment (USA)

- Verified, validated predictions
- Proper modeling of (multi-) physics
- Flexible, usable, user friendly tools
- Detailed models that reduce

Kolmogorov Complexity Modeling uncertainty

tivation	Probabilistic Elasto–Plas
00000	000000
0000	00000000000000000

SSEPFEM

Applications

Summary and Future

The Need for Simulations in (Geo-) Mechanics

Pile in Layered Soil: Pressure Ratio Reduction

Jeremić

Мо

Computational Geomechanics Group

Motivation	Probabilistic Elasto–Plasticity	SSEPFEM	Applications	Summary and Future	
0000000 000000	000000	0000 00000	00000		
The Need for Simulations in (Geo-) Mechanics					

Pile Group Interaction

Jeremić

Computational Geomechanics Group

Motivation
00000000
000000

Probabilistic Elasto–Plasticity

SSEPFEM

Applications

Summary and Future

The Need for Simulations in (Geo-) Mechanics

Pile in Liquefiable Sloping Ground

Jeremić

Computational Geomechanics Group

Motivation
00000000
000000

Probabilistic Elasto-Plasticity

SSEPFEM

Applications

Summary and Future

The Need for Simulations in (Geo-) Mechanics

Earthquake-Soil-Structure Interaction

Jeremić

Motivation	Probabilistic Elasto–Plasticity	SSEPFEM	Application
00000000 000000	000000	0000 00000	00000

Summary and Future

The Need for Simulations in (Geo-) Mechanics

PDD and Parallel Computer GeoWulf

- Plastic Domain Decomposition Elastic-Plastic Parallel Finite Element Method
- Distributed memory parallel computer
- Multiple generation compute nodes and networks
- Very cost effective!
- Same architecture as large parallel supercomputers (SDSC, TACC, EarthSimulator...)
- Local design, construction, available at all times!

Motivation	Probabilistic Elasto–Plasticity	SSEPFEM	Applications	Summary and Future
0000000 000000	000000	0000 00000	00000	
The Need for Simulat	ions in (Geo-) Mechanics			

Collaboratory

- Prof. Zhaohui Yang (U. of Alaska)
- Prof. Mahdi Taiebat (U. of British Columbia)
- Dr. Zhao Cheng (EarthMechanics Inc.)
- Dr. Guanzhou Jie (Wells Fargo Securities)
- Dr. Matthias Preisig (EPF de Lausanne)
- Prof. Kallol Sett (U. of Akron)

Jeremić

Motivation	Probabilistic Elasto–Plasticity	SSEPFEM	Applications	Summary and Future
00000000 •00000	000000	0000 00000	00000	
Uncertain Geomateri	als			

Outline

Motivation

The Need for Simulations in (Geo-) Mechanics

Uncertain Geomaterials

Probabilistic Elasto-Plasticity

PEP Formulation

Probabilistic Elastic-Plastic Response

Stochastic Elastic-Plastic Finite Element Method

- SSEPFEM Formulation
- SSEPFEM Example

Applications

Seismic Wave Propagation Through Uncertain Soils Probabilistic Analysis for Decision Making

Summary and Future

Motivation	Probabilistic Elasto–Plasticity	SSEPFEM	Applications	Summary and Future
00000000 000000	000000	0000 00000	00000	
Uncertain Geoma	aterials			

Material Behavior Inherently Uncertain

- Spatial variability
- Point-wise uncertainty, testing error, transformation error

(Mayne et al. (2000)

Jeremić

Motivation	Probabilistic Elasto–Plasticity	SSEPFEM	Applications
0000000	000000	0000	00000
000000	00000000000000	00000	

Summary and Future

Uncertain Geomaterials

Soil Uncertainties and Quantification

- Natural variability of soil deposit (Fenton 1999)
 - Function of soil formation process
- Testing error (Stokoe et al. 2004)
 - Imperfection of instruments
 - Error in methods to register quantities
- Transformation error (Phoon and Kulhawy 1999)
 - ► Correlation by empirical data fitting (e.g. CPT data → friction angle etc.)

Jeremić

Motivation	Probabilistic Elasto–Plasticity	SSEPFEM	Applications	Summary and Future
0000000	000000	0000	00000	
Uncertain Geomater	ials			

Types of Uncertainties

- Aleatory uncertainty inherent variation of physical system
 - Can not be reduced
 - Has highly developed mathematical tools
- Epistemic uncertainty due to lack of knowledge
 - Can be reduced by collecting more data
 - Mathematical tools are not well developed
 - trade-off with aleatory uncertainty

 Ergodicity (exchanging ensemble averages for time average) assumed to hold

Motivation	Probabilistic Elasto-Plasticity	SSEPFEM	Applications	Summary and Future
0000000 000000	000000	0000 00000	00000	
Uncertain Geomater	ials			

Historical Overview

- ► Brownian motion, Langevin equation → PDF governed by simple diffusion Eq. (Einstein 1905)
- ► Approach for random forcing → relationship between the autocorrelation function and spectral density function (Wiener 1930)
- With external forces → Fokker-Planck-Kolmogorov (FPK) for the PDF (Kolmogorov 1941)
- ► Approach for random coefficient → Functional integration approach (Hopf 1952), Averaged equation approach (Bharrucha-Reid 1968), Numerical approaches, Monte Carlo method

Motivation	Probabilistic Elasto-Plasticity	SSEPFEM	Applications	Summary and Future
0000000 000000	000000	0000 00000	00000	
Uncertain Geomaterials				

Recent State-of-the-Art

- Governing equation
 - Dynamic problems $\rightarrow M\ddot{u} + C\ddot{u} + Ku = F$
 - Static problems \rightarrow Ku = F
- Existing solution methods
 - Random r.h.s (external force random)
 - FPK equation approach
 - Use of fragility curves with deterministic FEM (DFEM)
 - Random I.h.s (material properties random)
 - Monte Carlo approach with DFEM \rightarrow CPU expensive
 - ► Perturbation method → a linearized expansion! Error increases as a function of COV
 - \blacktriangleright Spectral method \rightarrow developed for elastic materials so far

New developments for Probabilistic Elasto–Plasticity

Motivation	Probabilistic Elasto–Plasticity	SSEPFEM	Applications	Summary and Fut
00000000 000000	•••••• •••••••	0000 00000	00000000	

Outline

Motivation

The Need for Simulations in (Geo-) Mechanics Uncertain Geomaterials

Probabilistic Elasto-Plasticity

PEP Formulation

Probabilistic Elastic–Plastic Response

Stochastic Elastic–Plastic Finite Element Method SSEPEEM Formulation

SSEPFEM Example

Applications

Seismic Wave Propagation Through Uncertain Soils Probabilistic Analysis for Decision Making

Summary and Future

Motivation	Probabilistic Elasto–Plasticity	SSEPFEM	Applications	Summary and Futur
0000000 000000	000000 000000000000000000	0000 00000	00000	
PEP Formulation				

Uncertainty Propagation through Constitutive Eq.

• Incremental el–pl constitutive equation
$$\frac{d\sigma_{ij}}{dt} = D_{ijkl} \frac{d\epsilon_{kl}}{dt}$$

$$D_{ijkl} = \left\{ egin{array}{ll} D^{el}_{ijkl} & ext{for elastic} \ D^{el}_{ijkl} - rac{D^{el}_{ijmn}m_{mn}n_{pq}D^{el}_{pqkl}}{n_{rs}D^{el}_{rstu}m_{tu} - \xi_*r_*} & ext{for elastic-plastic} \end{array}
ight.$$

.

Computational Geomechanics Group

.

Simulations in Geomechanics: The Issue of Uncertainty

Jeremić

Motivation 00000000 000000	Probabilistic Elasto–Plasticity oooooooooooooooooooooooooooooooooooo	SSEPFEM 0000 00000	Applications	Summary and Future
PEP Formulation				

Previous Work

- ► Linear algebraic or differential equations → Analytical solution:
 - Variable Transf. Method (Montgomery and Runger 2003)
 - Cumulant Expansion Method (Gardiner 2004)
- Nonlinear differential equations (elasto-plastic/viscoelastic-viscoplastic):
 - Monte Carlo Simulation (Schueller 1997, De Lima et al 2001, Mellah et al. 2000, Griffiths et al. 2005...) → accurate, very costly
 - Perturbation Method (Anders and Hori 2000, Kleiber and Hien 1992, Matthies et al. 1997)

 \rightarrow first and second order Taylor series expansion about mean - limited to problems with small C.O.V. and inherits "closure problem"

Jeremić

Motivation	Probabilistic Elasto–Plasticity	SSEPFEM	Applications	Summary and Future
00000000 000000	000000 0000000000000000000000000000000	0000 00000	00000 00000000	
PEP Formulation				

Problem Statement and Solution

Incremental 3D elastic-plastic stress-strain:

 $d\sigma_{ij} = \left[D_{ijkl}^{el} - (D_{ijmn}^{el} m_{mn} n_{pq} D_{pqkl}^{el}) / (n_{rs} D_{rstu}^{el} m_{tu} - \xi_* r_*) \right] d\epsilon_{kl}$

- Define stress density ρ(σ, t) evolves in probabilistic space according to the constitutive equation
- Stress density ρ(σ, t) varies in pseudo-time according to a continuity Liouville equation (Kubo 1963)
 ∂ρ(σ(x, t), t)/∂t =
 −∂η(σ(x, t), D^{el}(x), q(x), r(x), ε(x, t)) ∂σρ[σ(x, t), t]
- Continuity equation can be written in ensemble average form (Kavvas and Karakas 1996)
- van Kampen's Lemma (van Kampen 1976): ensemble average of phase density is the probability density

Motivation 00000000 000000

Jeremić

Probabilistic Elasto–Plasticity

SSEPFEM

Applications

Summary and Future

PEP Formulation

Eulerian–Lagrangian FPK Equation

$$\begin{aligned} \frac{\partial P(\sigma(x_{t},t),t)}{\partial t} &= -\frac{\partial}{\partial \sigma} \left[\left\{ \left\langle \eta(\sigma(x_{t},t), D^{el}(x_{t}), q(x_{t}), r(x_{t}), \epsilon(x_{t},t)) \right\rangle \right. \\ \left. + \int_{0}^{t} d\tau Cov_{0} \left[\frac{\partial \eta(\sigma(x_{t},t), D^{el}(x_{t}), q(x_{t}), r(x_{t}), \epsilon(x_{t},t))}{\partial \sigma}; \right. \\ \left. \eta(\sigma(x_{t-\tau}, t-\tau), D^{el}(x_{t-\tau}), q(x_{t-\tau}), r(x_{t-\tau}), \epsilon(x_{t-\tau}, t-\tau)) \right] \right\} P(\sigma(x_{t}, t), t) \right] \\ + \left. \frac{\partial^{2}}{\partial \sigma^{2}} \left[\left\{ \int_{0}^{t} d\tau Cov_{0} \left[\eta(\sigma(x_{t}, t), D^{el}(x_{t}), q(x_{t}), r(x_{t}), \epsilon(x_{t}, t)); \right. \\ \left. \eta(\sigma(x_{t-\tau}, t-\tau), D^{el}(x_{t-\tau}), q(x_{t-\tau}), r(x_{t-\tau}), \epsilon(x_{t-\tau}, t-\tau)) \right] \right\} P(\sigma(x_{t}, t), t) \right] \end{aligned}$$

Computational Geomechanics Group

Motivation 00000000 000000 Probabilistic Elasto–Plasticity

SSEPFEM

Applications

Summary and Future

PEP Formulation

Eulerian–Lagrangian FPK Equation

Advection-diffusion equation

$$\frac{\partial P(\sigma, t)}{\partial t} = -\frac{\partial}{\partial \sigma} \left[N_{(1)} P(\sigma, t) - \frac{\partial}{\partial \sigma} \left\{ N_{(2)} P(\sigma, t) \right\} \right]$$

- Complete probabilistic description of response
- Solution PDF is second-order exact to covariance of time (exact mean and variance)
- It is deterministic equation in probability density space
- It is linear PDE in probability density space
- ► FPK diffusion–advection equation is applicable to any material model \rightarrow only the coefficients $N_{(1)}$ and $N_{(2)}$ are different for different material models

Motivation	Probabilistic Elasto-Plasticity	SSEPFEM	Applications	Summary and Future
00000000 000000	000000 00000000000000	0000 00000	00000	
Probabilistic Elastic-	Plastic Response			

Outline

Motivation

The Need for Simulations in (Geo-) Mechanics

Uncertain Geomaterials

Probabilistic Elasto-Plasticity

PEP Formulation

Probabilistic Elastic-Plastic Response

Stochastic Elastic–Plastic Finite Element Method SSEPFEM Formulation SSEPFEM Example

Applications

Seismic Wave Propagation Through Uncertain Soils Probabilistic Analysis for Decision Making

Summary and Future

Motivation	Probabilistic Elasto–Plasticity	SSEPFEM	Applications	Summary and Future
00000000 000000	000000 000000000000000	0000 00000	00000 00000000	
Probabilistic Elast	ic-Plastic Response			

Elastic Material with Uncertain Shear Modulus G

General form of elastic constitutive rate equation

$$\frac{d\sigma_{12}}{dt} = 2G\frac{d\epsilon_{12}}{dt} = \eta(G, \epsilon_{12}; t)$$

Advection and diffusion coefficients of FPK equation

$$N_{(1)} = 2 \frac{d\epsilon_{12}}{dt} < G > \quad ; \quad N_{(2)} = 4t \left(\frac{d\epsilon_{12}}{dt}\right)^2 Var[G]$$

► Example: < G > = 2.5 MPa; Std. Deviation[G] = 0.5 MPa

Simulations in Geomechanics: The Issue of Uncertainty

Jeremić

Verification – Variable Transformation Method

Motivation	Probabilistic Elasto–Plasticity	SSEPFEM	Applications	Summary and Future
00000000 000000	000000 0000000000000	0000 00000	00000 00000000	
Probabilistic Elastic–Plastic Response				

Modified Cam Clay Constitutive Model

$$\frac{d\sigma_{12}}{dt} = G^{ep} \frac{d\epsilon_{12}}{dt} = \eta(\sigma_{12}, G, M, e_0, p_0, \lambda, \kappa, \epsilon_{12}; t)$$
$$\eta = \left[2G - \frac{\left(36\frac{G^2}{M^4}\right)\sigma_{12}^2}{\frac{(1+e_0)p(2p-p_0)^2}{\kappa} + \left(18\frac{G}{M^4}\right)\sigma_{12}^2 + \frac{1+e_0}{\lambda-\kappa}pp_0(2p-p_0)} \right]$$

Advection and diffusion coefficients of FPK equation

$$\begin{split} \boldsymbol{\mathsf{N}}_{(1)}^{(i)} &= \left\langle \eta^{(i)}(t) \right\rangle + \int_{0}^{t} d\tau \boldsymbol{\mathsf{cov}} \left[\frac{\partial \eta^{(i)}(t)}{\partial t}; \eta^{(i)}(t-\tau) \right] \\ \boldsymbol{\mathsf{N}}_{(2)}^{(i)} &= \int_{0}^{t} d\tau \boldsymbol{\mathsf{cov}} \left[\eta^{(i)}(t); \eta^{(i)}(t-\tau) \right] \end{split}$$

Jeremić

Motivation	Probabilistic Elasto–Plasticity	SSEPFEM	Applications	Summary and Future
0000000 000000	000000 00000000000000	0000 00000	00000 00000000	
Probabilistic Elasti	c-Plastic Response			

Low OCR Cam Clay with Random G, M and p_0

Computational Geomechanics Group

UCDAVIS

Jeremić

Motivation	Probabilistic Elasto–Plasticity	SSEPFEM	Applications	Summary and Future
00000000 000000	000000 000000000000	0000 00000	00000	
Probabilistic Elas	tic-Plastic Response			

Comparison of Low OCR Cam Clay at ϵ = 1.62 %

- None coincides with deterministic
- Some very uncertain, some very certain
- Either on safe or unsafe side

Jeremić

Motivation 00000000 000000	Probabilistic Elasto–Plasticity	SSEPFEM 0000 00000	Applications 00000 00000000	Summary and Future	
Probabilistic Elastic-Plastic Response					

Probabilistic Yielding

- ► Weighted elastic and elastic-plastic solution $\partial P(\sigma, t) / \partial t = -\partial \left(N_{(1)}^w P(\sigma, t) - \partial \left(N_{(2)}^w P(\sigma, t) \right) / \partial \sigma \right) / \partial \sigma$
- Weighted advection and diffusion coefficients are then $N_{(1,2)}^w(\sigma) = (1 P[\Sigma_y \le \sigma])N_{(1)}^{el} + P[\Sigma_y \le \sigma]N_{(1)}^{el-pl}$
- Cumulative Density Function (CDF) of the yield function
- Similar to European Pricing Option in financial simulations (Black–Scholes options pricing model '73, Nobel prize for Economics '97)

Motivation	Probabilistic Elasto-Plasticity	SSEPFEM	Applications	Summary and Future	
0000000 000000	000000	0000 00000	00000		
Probabilistic Elastic-Plastic Response					

Bi–Linear von Mises Response

Jeremić

Computational Geomechanics Group

Motivation	Probabilistic Elasto–Plasticity	SSEPFEM	Applications	Summary and Futur
00000000 000000	000000 00000000000000	0000 00000	00000	
Drohobilistia Elec	tia Diastia Desperanse			

SPT Based Determination of Shear Strength

Transformation of SPT *N*-value \rightarrow undrained shear strength, s_u (cf. Phoon and Kulhawy (1999B)

Histogram of the residual (w.r.t the deterministic transformation equation) undrained strength, along with fitted probability density function (Pearson IV)

Motivation	Probabilistic Elasto–Plasticity	SSEPFEM	Applications	Summary and Future
00000000 000000	000000 000000000000000	0000 00000	00000	
Drobobilistic Elec	tia Blastia Bosponoa			

SPT Based Determination of Young's Modulus

Transformation of SPT *N*-value \rightarrow 1-D Young's modulus, *E* (cf. Phoon and Kulhawy (1999B))

Histogram of the residual (w.r.t the deterministic transformation equation) Young's modulus, along with fitted probability density function

Motivation	Probabilistic Elasto–Plasticity	SSEPFEM	Applications	Summary and Futur
00000000 000000	000000000000000000000000000000000000000	0000 00000	00000	
Probabilistic Elas	tia Blactia Bosponoa			

Probabilistic Material Response (von-Mises)

Motivation	Probabilistic Elasto–Plasticity	SSEPFEM	Applications	Summary and Fi
00000000 000000	000000 00000000000000000	0000 00000	00000	
Probabilistic Elas	stic-Plastic Response			

Probabilistic Material Response, Standard Deviation

Jeremić

Computational Geomechanics Group

ture

Jeremić

Computational Geomechanics Group

0.05

0.1

Shear Strain (%)

0.2

PI=100% (Stokoe et al. 2004)

0.02

Simulations in Geomechanics: The Issue of Uncertainty

0.01

5

Jeremić

Computational Geomechanics Group

0.5

Motivation	Probabilistic Elasto–Plasticity	SSEPFEM	Applications	Summary and Future
00000000 000000	000000	0000 00000	00000	
SSEPFEM Formulation				

Outline

Motivation

The Need for Simulations in (Geo-) Mechanics

Uncertain Geomaterials

Probabilistic Elasto-Plasticity

PEP Formulation

Probabilistic Elastic-Plastic Response

Stochastic Elastic–Plastic Finite Element Method SSEPFEM Formulation

SSEPFEM Example

Applications

Seismic Wave Propagation Through Uncertain Soils Probabilistic Analysis for Decision Making

Summary and Future

Motivation	
00000000	
000000	

Probabilistic Elasto–Plasticity

SSEPFEM

Applications

Summary and Future

SSEPFEM Formulation

Stochastic Finite Element Formulation

Governing equations:

$$A\sigma = \phi(t); \quad Bu = \epsilon; \quad \sigma = D\epsilon$$

Spatial and stochastic discretization

- ► Deterministic spatial differential operators $(A \& B) \rightarrow$ Regular shape function method with Galerkin scheme
- ► Input random field material properties (D) → Karhunen–Loève (KL) expansion, optimal expansion, error minimizing property
- ► Unknown solution random field $(u) \rightarrow$ Polynomial Chaos (PC) expansion

Probabilistic Elasto-Plasticity

SSEPFEM

Applications

Summary and Future

SSEPFEM Formulation

Spectral Stochastic Elastic–Plastic FEM

 Minimizing norm of error of finite representation using Galerkin technique (Ghanem and Spanos 2003):

$$\sum_{n=1}^{N} \mathcal{K}_{mn}^{ep} d_{ni} + \sum_{n=1}^{N} \sum_{j=0}^{P} d_{nj} \sum_{k=1}^{M} C_{ijk} \mathcal{K}_{mnk}^{'ep} = \langle F_m \psi_i[\{\xi_r\}] \rangle$$
$$\mathcal{K}_{mn}^{ep} = \int_{D} B_n D^{ep} B_m dV \qquad \mathcal{K}_{mnk}^{'ep} = \int_{D} B_n \sqrt{\lambda_k} h_k B_m dV$$
$$C_{ijk} = \langle \xi_k(\theta) \psi_i[\{\xi_r\}] \psi_j[\{\xi_r\}] \rangle \qquad F_m = \int_{D} \phi N_m dV$$

Simulations in Geomechanics: The Issue of Uncertainty

Jeremić

Motivation	Probabilistic Elasto-Plasticity	SSEPFEM	Applications	Summary and Future	
0000000	000000	00000	00000		
SSEPFEM Formulation					

Inside SSEPFEM

- Explicit stochastic elastic–plastic finite element computations
- FPK probabilistic constitutive integration at Gauss integration points
- Increase in (stochastic) dimensions (KL and PC) of the problem
- Excellent for parallelization, both at the element and global levels
- Development of the probabilistic elastic-plastic stiffness tensor

00000000 0000000000000000000000000000	Motivation	Probabilistic Elasto–Plasticity	SSEPFEM	Applications	Summary and Future
	0000000 000000	000000	0000 ●0000	00000	
SSEPFEM Example	SSEPFEM Example				

Outline

Motivation

The Need for Simulations in (Geo-) Mechanics

Uncertain Geomaterials

Probabilistic Elasto-Plasticity

PEP Formulation Probabilistic Elastic-Plastic Res

Stochastic Elastic-Plastic Finite Element Method

SSEPFEM Formulation

SSEPFEM Example

Applications

Seismic Wave Propagation Through Uncertain Soils Probabilistic Analysis for Decision Making

Summary and Future

Motivation 00000000 000000 Probabilistic Elasto–Plasticity

SSEPFEM

Applications

Summary and Future

SSEPFEM Example

1–D Static Pushover Test Example

Linear elastic model: < G >= 2.5 kPa, Var[G] = 0.15 kPa², correlation length for G = 0.3 m.

 Elastic-plastic material model, von Mises, linear hardening,
 < G>= 2.5 kPa,
 Var[G] = 0.15 kPa²,
 correlation length for G = 0.3 m,
 C_u = 5 kPa,
 C'_u = 2 kPa.

Motivation	Probabilistic Elasto-Plasticity	SSEPFEM	Applications	Summary and Future
00000000 000000	000000	0000	00000	
SSEPFEM Examp	ble			

SSEPFEM Response

Mean and standard deviations of displacement at the top node, von Mises elastic-perfectly plastic material model, KL-dimension=2, order of PC=2.

Motivation	Probabilistic Elasto-Plasticity	SSEPFEM	Applications	Summary a
00000000	000000	0000	00000	

SSEPFEM Example

Evolution of Probabilistic Stiffness at -6.645m

Computational Geomechanics Group

Motivation	Probabilistic Elasto–Plasticity	SSEPFEM	Арр
0000000	000000	0000	000
		00000	

Applications

Summary and Future

SSEPFEM Example

Probability for Softening!

Jeremić

Computational Geomechanics Group

Motivation 00000000 000000	Probabilistic Elasto–Plasticity oooooo oooooooooooooooo	SSEPFEM 0000 00000	Applications ●0000 00000000	Summary and Future
Seismic Wave Propa	agation Through Uncertain Soils			
Outline				
Motiva	tion			
The Unc	Need for Simulations certain Geomaterials	in (Geo-) I	Vechanics	
Probab PEI Pro	vilistic Elasto–Plasticity P Formulation babilistic Elastic–Plast	ic Respon	se	
Stocha SSI SSI	stic Elastic–Plastic Fin EPFEM Formulation EPFEM Example	iite Elemer	it Method	
Applied	tiono			

Applications

Jeremić

Seismic Wave Propagation Through Uncertain Soils

Probabilistic Analysis for Decision Making

Summary and Future

Seismic Wave Propagation through Stochastic Soil

- Soil as 12.5 m deep 1–D soil column (von Mises Material)
 - Properties (including testing uncertainty) obtained through random field modeling of CPT *q*_T
 ⟨*q*_T⟩ = 4.99 *MPa*; *Var*[*q*_T] = 25.67 *MPa*²;
 Cor. Length [*q*_T] = 0.61 *m*; Testing Error = 2.78 *MPa*²
- q_T was transformed to obtain G: $G/(1-\nu) = 2.9q_T$
 - Assumed transformation uncertainty = 5% $\langle G \rangle = 11.57 MPa; Var[G] = 142.32 MPa^2$ Cor. Length [G] = 0.61 m
- Input motions: modified 1938 Imperial Valley

Motivation	Probabilistic Elasto-Plasticity	SSEPFE
0000000 000000	000000	0000 00000

Applications

Seismic Wave Propagation Through Uncertain Soils

Random Field Parameters from Site Data

Maximum likelihood estimates

Jeremić

Computational Geomechanics Group

Motivation 00000000 000000 Probabilistic Elasto–Plasticity

SSEPFEM

Applications

Summary and Future

Seismic Wave Propagation Through Uncertain Soils

"Uniform" CPT Site Data

Jeremić

Computational Geomechanics Group

Motivation	Probabilistic Elasto–Plasticity	SSEPFEM	Applications	Summary and I
00000000 000000	000000 00000000000000	0000 00000	00000	
Seismic Wave Pr	opagation Through Uncertain Soils			

Seismic Wave Propagation through Stochastic Soil

Mean± Standard Deviation

Jeremić

Computational Geomechanics Group

Motivation 00000000 000000	Probabilistic Elasto–Plasticity	SSEPFEM 0000 00000	Applications	Summary and Future
Probabilistic Analys	is for Decision Making			
Outline				
Motiva	tion			
The Un	e Need for Simulation certain Geomaterials	is in (Geo-)	Mechanics	
Probal PE	oilistic Elasto–Plastici P Formulation	ty		
Pro	babilistic Elastic-Pla	stic Respon	se	
Stocha SS SS	astic Elastic–Plastic F EPFEM Formulation EPFEM Example	inite Elemei	nt Method	
Applic	ations			

Seismic Wave Propagation Through Uncertain Soils Probabilistic Analysis for Decision Making

Summary and Future

<i>Notivation</i>	Probabilistic Elasto–Plasticit
0000000	000000
00000	0000000000000000

SSEPFEN

Applications

Summary and Future

Probabilistic Analysis for Decision Making

Decision About Site (Material) Characterization

- Do nothing about site characterization (rely on experience): conservative guess of soil data, COV = 225%, correlation length = 12m.
- Do better than standard site characterization: COV = 103%, correlation length = 0.61m)
- Improve site (material) characterization if probabilities of exceedance are unacceptable!

Jeremić

Probabilistic Analysis for Decision Making

Evolution of Mean \pm SD for Guess Case

 Motivation
 Probabilistic Elasto-Plasticity
 SSEPFEM
 Applications

 0000000
 00000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 <t

Summary and Future

Probabilistic Analysis for Decision Making

Evolution of Mean \pm SD for Real Data Case

Jeremić

Computational Geomechanics Group

Motivation 00000000 000000	Probabilistic Elasto–Plasticity ০০০০০০ ০০০০০০০০০০০০০০০০০০০০০০০০০০০০০	SSEPFEM 0000 00000	Applications ○○○○○ ○○○○●○○○○	Summary and Future
Probabilistic Ana	lysis for Decision Making			
Full PD	Fs for Real Data	Case		

Jeremić

Motivation 00000000 000000	Probabilistic Elasto–Plasticity	SSEPFEM 0000 00000	Applications	Summary and Future
Probabilistic Analysis	s for Decision Making			

Example: PDF at 6 s

Jeremić

Motivation	Probabilistic Elasto-Plasticity	SSEPFEM	Applications	Summary and Future
0000000	000000	00000	0000000000	
Probabilistic Analysis	for Decision Making			

Example: CDF at 6 s

Jeremić

Computational Geomechanics Group

Motivation 00000000 000000	Probabilistic Elasto–Plasticity ೦೦೦೦೦೦ ೦೦೦೦೦೦೦೦೦೦೦೦೦೦	SSEPFEM 0000 00000	Applications	Summary and Futur
Probabilistic Ana	lysis for Decision Making			
Probab	ility of Unaccepta	able Defo	rmation (50	Ocm)

Motivation	Probabilistic Elasto-Plasticity	SSEPFEM	Applications	Summary a
00000000	000000	0000	00000	
000000	000000000000000000000000000000000000000	00000	000000000	

Probabilistic Analysis for Decision Making

Risk Informed Decision Process

Motivation	Probabilistic Elasto–Plasticity	SSEPFEM	Applications	Summary and Future
00000000 000000	000000	0000 00000	00000	

Summary

- Material (solids and structures) behavior is uncertain (probably!)
- Simulation of behavior for Geotechnical/Structural system needs to be done probabilistically
- Methods for such simulations do exist (shown today)
- Problem might be with the Human Nature! (how much do you want or do not want to know about potential problem?!)

Motivation	Probabilistic Elasto–Plasticity	SSEPFEM	Applications	Summary and Future
0000000 000000	000000	0000 00000	00000	

Risk Information

Risk informed decisions, very valuable and sought after in

Nuclear Engineering Aerospace Engineering Mechanical Engineering Biomechanics Civil Engineering (Geotech/Struct)

- Owners, Banks and Insurance agencies (will) require it
- Improve infrastructure economy and safety through rational probabilistic mechanics