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The Need for Simulations in (Geo-) Mechanics

Numerical Simulation in Support of Design!

» Practical design experience

Design of concrete and rock dams, bridges (YU, IR, USA)
Design of residential and industrial buildings (SUI, SA)
Design of buildings, tunnels, oil exploration equipment
(USA)

» Verified, validated predictions
» Proper modeling of (multi-) physics
» Flexible, usable, user friendly tools

» Detailed models that reduce

Kolmogorov Complexity
Modeling uncertainty
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The Need for Simulations in (Geo-) Mechanics

Pile in Layered Soil: Pressure Ratio Reduction
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The Need for Simulations in (Geo-) Mechanics

Pile Group Interaction
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The Need for Simulations in (Geo-) Mechanics

Pile in Liquefiable Sloping Ground
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00000e00

The Need for Simulations in (Geo-) Mechanics

Earthquake-Soil-Structure Interaction

Moment (kN*m)
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The Need for Simulations in (Geo-) Mechanics

PDD and Parallel Computer GeoWulf

» Plastic Domain Decomposition
Elastic-Plastic Parallel
Finite Element Method

» Distributed memory
parallel computer

» Multiple generation compute
nodes and networks

» Very cost effective!

» Same architecture as
large parallel supercomputers
(SDSC, TACC, EarthSimulator...)

» Local design, construction,
available at all times!
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The Need for Simulations in (Geo-) Mechanics

Collaboratory
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Uncertain Geomaterials

Material Behavior Inherently Uncertain

Effective Friction Angle (deg)
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(Mayne et al. (2000)
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Uncertain Geomaterials

Soil Uncertainties and Quantification

» Natural variability of soil deposit (Fenton 1999)

» Function of soil formation process

» Testing error (Stokoe et al. 2004)

» Imperfection of instruments
» Error in methods to register quantities

» Transformation error (Phoon and Kulhawy 1999)

» Correlation by empirical data fitting (e.g. CPT data —
friction angle etc.)
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Uncertain Geomaterials

Types of Uncertainties

» Aleatory uncertainty - inherent variation of physical system

» Can not be reduced
» Has highly developed mathematical tools

» Epistemic uncertainty - due to lack of knowledge

» Can be reduced by
collecting more data o I
. = >

» Mathematical tools 2y eE z]l 5 .
£ E R >l 2 2
are not well developed = g < s&l s 2
» trade-off with 53 2 § 532 <
. o0 S
aleatory uncertainty a w > <Sp L o

» Ergodicity (exchanging ensemble averages for time
average) assumed to hold
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Uncertain Geomaterials

Historical Overview

» Brownian motion, Langevin equation — PDF governed by
simple diffusion Eq. (Einstein 1905)

» Approach for random forcing — relationship between the
autocorrelation function and spectral density function
(Wiener 1930)

» With external forces — Fokker-Planck-Kolmogorov (FPK)
for the PDF (Kolmogorov 1941)

» Approach for random coefficient — Functional integration
approach (Hopf 1952), Averaged equation approach
(Bharrucha-Reid 1968), Numerical approaches, Monte
Carlo method
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Uncertain Geomaterials

Recent State-of-the-Art

» Governing equation

» Dynamic problems — Miu+ Cu+ Ku = F
» Static problems — Ku=F

» Existing solution methods

» Random r.h.s (external force random)

» FPK equation approach

» Use of fragility curves with deterministic FEM (DFEM)
» Random l.h.s (material properties random)

» Monte Carlo approach with DFEM — CPU expensive

» Perturbation method — a linearized expansion! Error
increases as a function of COV

» Spectral method — developed for elastic materials so far

» New developments for Probabilistic Elasto—Plasticity

Jeremi¢ Computational Geomechanics Group UCDAVIS|

Simulations in Geomechanics: The Issue of Uncertainty
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PEP Formulation
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Probabilistic Elasto—Plasticity
PEP Formulation
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Probabilistic Elasto—Plasticity
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PEP Formulation

Uncertainty Propagation through Constitutive Eq.

- . doj d
» Incremental el—pl constitutive equation il ,-,-k,ﬂ
dt dt
. .
D5y for elastic

Diyy =
ijkl el el
D,jm,, MmnNpq quk,

for elastic—plastic
nrsDresltumtu — &l

el
D ikl
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Probabilistic Elasto—Plasticity
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PEP Formulation

Previous Work

» Linear algebraic or differential equations — Analytical
solution:

» Variable Transf. Method (Montgomery and Runger 2003)
» Cumulant Expansion Method (Gardiner 2004)

» Nonlinear differential equations
(elasto-plastic/viscoelastic-viscoplastic):

» Monte Carlo Simulation (Schueller 1997, De Lima et al
2001, Mellah et al. 2000, Griffiths et al. 2005...)
— accurate, very costly

» Perturbation Method (Anders and Hori 2000, Kleiber and
Hien 1992, Matthies et al. 1997)
— first and second order Taylor series expansion about
mean - limited to problems with small C.O.V. and inherits
"closure problem"
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Probabilistic Elasto—Plasticity
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PEP Formulation

Problem Statement and Solution

Jeremi¢

>

Incremental 3D elastic-plastic stress—strain:

— / / el el
dgﬁ - [Di/e'kl - (Dﬁmnmm”anquk/)/(nfSDrstume - 5*1‘*)} dey

Define stress density p(o, t) evolves in probabilistic space
according to the constitutive equation

Stress density p(o, t) varies in pseudo-time according to a
continuity Liouville equation (Kubo 1963)

dp(o(x,t),t)/0t =

—on(a(x,t), D%(x), q(x), r(x), e(x, 1)) doplo(x, 1), 1]
Continuity equation can be written in ensemble average
form (Kavvas and Karakas 1996)

van Kampen’s Lemma (van Kampen 1976): ensemble
average of phase density is the probability density
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Probabilistic Elasto—Plasticity
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PEP Formulation

Eulerian—Lagrangian FPK Equation

Pyt 0 H<n(g(x,, £), D% (x1), G0, r(x1), e(xe z‘))>
+ f drCovy |:877(U(Xf7 t)? De/(Xz)éq(X1)7 f(Xz), E(XU t)) :
0 a

(o (Xt—r, t = 7), D% (Xe—r), Q(Xt—7), F(Xt—r ), €(Xe—r, t = 7)} } P(o(x:, 1), f)]
+ 83722 H /O thCOVo [n(a(xt,t),De’(xf),q(x:),r(Xr)ve(Xr, 1);

n(o(Xt—+, t — 7), De’(xz_f), q(Xt—+), r(Xt—r), €(Xt—r, t — r))} } P(o(xt, t), t)}
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Probabilistic Elasto—Plasticity
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Eulerian—Lagrangian FPK Equation

» Advection-diffusion equation

8Pé? f) _ _% [Nmp(g’ t) — % {N)P(o, t)}}

» Complete probabilistic description of response

» Solution PDF is second-order exact to covariance of time
(exact mean and variance)

» It is deterministic equation in probability density space
» ltis linear PDE in probability density space

» FPK diffusion—advection equation is applicable to any
material model — only the coefficients N(;y and Nz are
different for different material models
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Probabilistic Elasto—Plasticity
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Probabilistic Elastic—Plastic Response
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Probabilistic Elasto—Plasticity

Probabilistic Elastic—Plastic Response
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Probabilistic Elasto—Plasticity
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Probabilistic Elastic—Plastic Response

Elastic Material with Uncertain Shear Modulus G

» General form of elastic constitutive rate equation

doy deqo
a = 2G at

= n(Gv €12, t)
» Advection and diffusion coefficients of FPK equation

deqo
at

2
<G> ; N(g):4t<d2;2> Var[G]

» Example: < G > = 2.5 MPa; Std. Deviation[G] = 0.5 MPa
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Probabilistic Elasto—Plasticity
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Probabilistic Elastic—Plastic Response

Probabilistic Elastic Response

10000

7500
Prob Density 5000

2500

Time (Sec) 0.006 0.001 Stress (MPa)
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Probabilistic Elasto—Plasticity
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Probabilistic Elastic—Plastic Response

Verification — Variable Transformation Method

0 Strain (%) 0.0426
0.0025} g
Std. Deviation Lines e
(Fokker—Planck) -~
0.002 ¢} -7

E Std. Deviation Lines
S 0.0015} (Variable Transformation)
P
12}
=
E o.o01f
Mean Line
(Fokker—Planck)
0.0005 ¢

. Mean Line
(Variable Transformation)

0.002 0.004 0.006 0.008
Time (Sec)
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Probabilistic Elasto—Plasticity
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Probabilistic Elastic—Plastic Response

Modified Cam Clay Constitutive Model

d d
% N ep% =1(012, G, M, €, Po, A, ki, €12; 1)
GZ
<36M4> 0122
n= |2G—

(1 + eo)p(2p — po)? G 1+ e
. + 18W 0% + mPPO(QP—PO)

Advection and diffusion coefficients of FPK equation
(i) (i ! ().
NG = (nO(t)) +/0 droov | P 0t - 1)

, t . .
N — /O dreov [ (1)1t - 7)]
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Summary and Future
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Probabilistic Elastic—Plastic Response

Low OCR Cam Clay with Random G, M and py

. 0 Strain (%) 1.62
» Non-symmetry in
probability 0. 04 Mode Line
distribution
Std. Deviation Lines
» Difference 0.03
between

mean, mode and
deterministic

Stress (MPa)

» Divergence at

.01
critical state
because M might be
(is) uncertain? 0
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Probabilistic Elasto—Plasticity
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Probabilistic Elastic—Plastic Response

Comparison of Low OCR Cam Clay at ¢ = 1.62 %

N
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PDF of Shear Stress
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™
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1 RandomG,M,p0 \, |t .4
~— .;‘,' \
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Det Vaue

/

0.01 0.02

0.03 0.04

Shear Stress (MPa)

» None coincides with deterministic
» Some very uncertain, some very certain
» Either on safe or unsafe side
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Probabilistic Elasto—Plasticity
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Probabilistic Elastic—Plastic Response

Probabilistic Yielding

» Weighted elastic and elastic—plastic solution
OP(o,1)/0t = —8 (N("‘{)P(a, £ — 0 (N(vg) P(o, t)) /80) /9o
» Weighted advection and diffusion coefficients are then

Nl (o) = (1 = P[Z, < 0])NE) + P[z, < oING,

» Cumulative Density Function iz = Pl <)

(CDF) of the yield function

» Similar to European Pricing 08--------- & r @
Option in financial simulations 06
(Black—Scholes options 04 5
pricing model ’73, Nobel prize for g2 :
Economics ’'97) 5

M
o000 00001 oocoss Y MFe
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Probabilistic Elasto—Plasticity Applications Summary and Future

(e]e] lelele]ele]e)
Probabilistic Elastic—Plastic Response

Bi—Linear von Mises Response

0. 0003

0. 00025

0. 0002

0. 00015

Stress (MPa)

0. 0001

Deterministic

0. 00005 Solution

0 0.0108 0.0216 0.0324 0.0432 0.054
Strain (%)
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Probabilistic Elasto—Plasticity
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Probabilistic Elastic—Plastic Response

SPT Based Determination of Shear Strength

400 §, = (101.125%0.29) NO72
0.008

0.006

Normalized Frequency

0.004

0.002

Undrained Shear Strength (kPa)

40 -300 -200 -100 0 100 20(
Residual (w.r.t Mean) Undrained Shear Strength (kPa)

Transformation of SPT N-value — undrained shear strength, s,
(cf. Phoon and Kulhawy (1999B)

Histogram of the residual (w.r.t the deterministic transformation
equation) undrained strength, along with fitted probability
density function (Pearson V)
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Probabilistic Elasto—Plasticity
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Probabilistic Elastic—Plastic Response

SPT Based Determination of Young’s Modulus

. 0.00008
= 5]
£ 30000 g 0.00006
b o

25000 o
[}
2 50000 B 0.00004
g 15000 T

£

% 10000 ::i S 000002
S 5000

E=(101.125*19.3) N 063

5 10 15 20 25 30 35 10000 0 10000
SPT N Value Residual (w.r.t Mean) Young’'s Modulus (kPa)

Transformation of SPT N-value — 1-D Young’s modulus, E (cf.
Phoon and Kulhawy (1999B))

Histogram of the residual (w.r.t the deterministic transformation
equation) Young’s modulus, along with fitted probability density
function

Jeremi¢ Computational Geomechanics Group UCDAVIS|

Simulations in Geomechanics: The Issue of Uncertainty



Probabilistic Elasto—Plasticity
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Probabilistic Elastic—Plastic Response

Probabilistic Material Response (von—Mises)

= S 02}~ /,’f’ 7
o J/ , g
» ) 01 . Mean )
[70] ’ / ’
[} / J y
= J/ K
n ) / ) /
.
g -1 -0.5 Sheg 1
e
n
-0.1¢f
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Probabilistic Elasto—Plasticity
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Probabilistic Elastic—Plastic Response

Probabilistic Material Response, Standard Deviation

Shear Stress (MPa)

Jeremi¢

r Strain (%p5

Standard Deviatior

Shear Stress (MPa)

-05 ‘ 05 1
Shear Strain (%)

|
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Probabilistic Elasto—Plasticity
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Probabilistic Elastic—Plastic Response

G/ Gmax Response

P1=200% (Vucetic and Dobry 1991)
PI1=100% (Vucetic and Dobry 199

P1=100% (Stokoe et al. 2004)

Deterministic
Mean

MeanzStandard Deviation

Jeremi¢
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Probabilistic Elasto—Plasticity
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Probabilistic Elastic—Plastic Response

Damping Response

Deterministic —
Corresponding to hysteresis /
20 loop of Mean of shear stress
S ;
S 15! Corresponding to hysteresis loop of
g MeanzStandard Deviation of shear stresg
(o))
%_ PI1=100% (Vucetic and Dobry 199,
g 10+ -
I} P1=200% (Vucetic and Dobry 1993 ’
a 7o
-
5 PI1=100% (Stokoe et al. 2004) —
0.0l 0.02 005 0.1 0.2 0.5 1

Shear Strain (%)
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SSEPFEM
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SSEPFEM Formulation

Outline

Stochastic Elastic—Plastic Finite Element Method
SSEPFEM Formulation
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SSEPFEM
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SSEPFEM Formulation

Stochastic Finite Element Formulation

» Governing equations:
Ao = ¢(t); Bu=¢e o= De

» Spatial and stochastic discretization
» Deterministic spatial differential operators (A & B) —
Regular shape function method with Galerkin scheme

» Input random field material properties (D) —
Karhunen—-Loéve (KL) expansion, optimal expansion, error
minimizing property

» Unknown solution random field (u) — Polynomial Chaos
(PC) expansion
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SSEPFEM
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SSEPFEM Formulation

Spectral Stochastic Elastic—Plastic FEM

» Minimizing norm of error of finite representation using
Galerkin technique (Ghanem and Spanos 2003):

Z K,%ndm + Z Z dn/ Z Cl/kaerfk = (Fmil{&r}])

n=1 j=0 =
Ko = /D B,D®% B,,dV K'eP — /D BV Ak hk BrmdV

mnk —

Cik = (& (O)ul{e N H{EN) Frn = /D SNV
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SSEPFEM
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SSEPFEM Formulation

Inside SSEPFEM

» Explicit stochastic elastic—plastic finite element
computations

» FPK probabilistic constitutive integration at Gauss
integration points

» Increase in (stochastic) dimensions (KL and PC) of the
problem

» Excellent for parallelization, both at the element and global
levels

» Development of the probabilistic elastic—plastic stiffness
tensor
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SSEPFEM
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SSEPFEM Example

Outline

Stochastic Elastic—Plastic Finite Element Method

SSEPFEM Example
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SSEPFEM
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SSEPFEM Example

1—D Static Pushover Test Example

» Linear elastic model: =
< G >=2.5kPa, 3
Var[G] = 0.15 kPa?,
correlation length for G = 0.3 m.

» Elastic—plastic material model,

von Mises, linear hardening, -

< G >= 2.5kPa,

Var[G] = 0.15 kPa?,

correlation length for G = 0.3 m,

Cy, =5 kPa, 1z 7

C, = 2kPa.
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SSEPFEM
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SSEPFEM Example

SSEPFEM Response

o
©,

Load [kN]
o

o
=

0.0 ‘ ‘ ‘ ‘ J
0.000 0.005  0.010 0.015 0.020 0.02¢
Displacements [m]

Mean and standard deviations of displacement at the top node,

von Mises elastic-perfectly plastic material model,

KL-dimension=2, order of PC=2.
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SSEPFEM
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SSEPFEM Example

Evolution of Probabilistic Stiffness at —6.645m

60F —— at 1st KL-space
sof 800 \ — — - at 2nd KL-space -

g8

% s 40 600}

=83 <

S 5 400

§ 8 20f

= [

s 100 200
ok . . . . . 3 ok . . . I ]
000 005 010 015 020 025 0.3C 000 005 010 015 020 025 030

Load (kN) Load (kN)
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SSEPFEM
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SSEPFEM Example

Probability for Softening!

oF — 0
2
2F ]
— 4f 1.4
E E
% 61 Load¥ 1 £ 6
g gl 15 Q1 OKkN‘] 8 g
10F i 10
12 & . . . . . .3 12 b . . . . . g
0 10 20 30 40 50 60 0 10 20 30 40 50 60
Mean of Tangent Modulus (M Pa) St.Dev. of Tangent Modulus [MPa]
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Applications
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Seismic Wave Propagation Through Uncertain Soils

Outline

Applications
Seismic Wave Propagation Through Uncertain Soils
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Applications
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Seismic Wave Propagation Through Uncertain Soils

Seismic Wave Propagation through Stochastic Soll

» Soil as 12.5 m deep 1-D soil column (von Mises Material)

» Properties (including testing uncertainty) obtained through
random field modeling of CPT qr
(qr) = 4.99 MPa; Var[qr] = 25.67 MP2?;
Cor. Length [g7] = 0.61 m; Testing Error = 2.78 MPz?

» gr was transformed to obtain G: G/(1 —v) = 2.9qr

» Assumed transformation uncertainty = 5%
(G) = 11.57MPa; Var[G] = 142.32MP2?
Cor. Length [G] = 0.61m

» Input motions: modified 1938 Imperial Valley

Jeremi¢ Computational Geomechanics Group
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Applications
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Seismic Wave Propagation Through Uncertain Soils

Random Field Parameters from Site Data

» Maximum likelihood estimates

§-N Coordinate (m) q Ml.nlth:h
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Seismic Wave Propagation Through Uncertain Soils

"Uniform" CPT Site Data
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Seismic Wave Propagation Through Uncertain Soils

Seismic Wave Propagation through Stochastic Soll
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Probabilistic Analysis for Decision Making

Outline

Applications

Probabilistic Analysis for Decision Making
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Probabilistic Analysis for Decision Making

Decision About Site (Material) Characterization

» Do nothing about site characterization (rely on
experience): conservative guess of soil data,
COV = 225%, correlation length = 12m.

» Do better than standard site characterization:
COV = 103%, correlation length = 0.61m)

» Improve site (material) characterization if probabilities of
exceedance are unacceptable!
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Probabilistic Analysis for Decision Making

Evolution of Mean + SD for Guess Case
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Probabilistic Analysis for Decision Making

Evolution of Mean 4+ SD for Real Data Case
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Probabilistic Analysis for Decision Making

Full PDFs for Real Data Case
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Probabilistic Analysis for Decision Making

Example: PDF at 6 s

— Real Soil Data
—— Conservative Guess

-1000 -500 500 1000

Displacement (mm)
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Probabilistic Analysis for Decision Making

Example: CDF at6 s
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Probabilistic Analysis for Decision Making

Probability of Unacceptable Deformation (50cm)
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Applications
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Risk Informed Decision Process
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Summary and Future

Summary

» Material (solids and structures) behavior is uncertain
(probabily!)

» Simulation of behavior for Geotechnical/Structural system
needs to be done probabilistically

» Methods for such simulations do exist (shown today)

» Problem might be with the Human Nature! (how much do
you want or do not want to know about potential problem?!)
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Risk Information

» Risk informed decisions, very valuable and sought after in

Nuclear Engineering

Aerospace Engineering
Mechanical Engineering
Biomechanics

Civil Engineering (Geotech/Struct)

» Owners, Banks and Insurance agencies (will) require it

» Improve infrastructure economy and safety through rational
probabilistic mechanics
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