A Hypothesis o	Seismic Energy o o	ESSI Modeling	Uncertainty Aspects oo oooooooooooooo	Summary o

On Seismic Soil Structure Interaction Simulations for Nuclear Power Plants

B. Jeremić, N. Tafazzoli, B. Kamrani, Y.C. Chao, C.G. Jeong, P. Tasiopoulou, K. Sett, A. Kammerer, N. Orbović, and A. Blahoianu

OECD/NEA SSI workshop, Ottawa, October 2010

Jeremić at al.

A Hypothesis	Seismic Energy o o	ESSI Modeling	Uncertainty Aspects oo oooooooooooooo	Summary o

Outline

A Hypothesis

Seismic Energy

Seismic Energy Input Seismic Energy Dissipation

ESSI Modeling

Frequency and Time Domain Techniques Verification and Validation

Uncertainty Aspects

Uncertain Engineering Materials Uncertain Seismic Motions

Summary

A Hypothesis o	Seismic Energy o o	ESSI Modeling	Uncertainty Aspects oo oooooooooooooo	Summary o

Outline

A Hypothesis

Seismic Energy

Seismic Energy Input Seismic Energy Dissipation

ESSI Modeling

Frequency and Time Domain Techniques Verification and Validation

Uncertainty Aspects

Uncertain Engineering Materials Uncertain Seismic Motions

Summary

A Hypothesis ●	Seismic Energy o o	ESSI Modeling	Uncertainty Aspects oo oooooooooooooo	Summary o
A Hypothesis				

The ESSI Hypothesis

- NPPSSS response is a function of a tightly coupled (in space and time) triad of dynamic characteristic of
 - Earthquake Ground Motions
 - Underlying Soil/Rock
 - NPP Structure, Systems and Components (NPPSSC)
- Energy balance: input (seismic) and dissipated (inelasticity, radiation, coupling) will control fate of the NPPSSS
- Better understanding of the timing and spatial location of energy dissipation in Earthquake-Soil-Structure Interaction (ESSI) system can add significant benefit to the safety and economy of NPPSSSs
- High Fidelity Numerical Simulations of ESSI for NPPSSS

A Hypothesis o	Seismic Energy o o	ESSI Modeling	Uncertainty Aspects oo oooooooooooooo	Summary o

Outline

A Hypothesis

Seismic Energy Seismic Energy Input Seismic Energy Dissipation

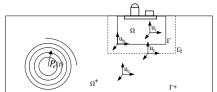
ESSI Modeling

Frequency and Time Domain Techniques Verification and Validation

Uncertainty Aspects

Uncertain Engineering Materials Uncertain Seismic Motions

Summary


A Hypothesis o	Seismic Energy	ESSI Modeling ooooooooo ooo	Uncertainty Aspects oo oooooooooooo	Summary O
Seismic Energy Input				

Seismic Energy Input Into the NPPSSS

- Seismic energy propagates to the NPPSSS
- ► Kinetic energy flux through closed surface Γ includes both incoming and outgoing waves (using DRM)

$$E_{\textit{flux}} = \left[0; -M_{be}^{\Omega+} \ddot{u}_{e}^{0} - K_{be}^{\Omega+} u_{e}^{0}; M_{eb}^{\Omega+} \ddot{u}_{b}^{0} + K_{eb}^{\Omega+} u_{b}^{0}\right]_{i} \times u_{i}$$

- Alternatively, $E_{flux} = \rho Ac \int_0^t \dot{u}_i^2 dt$
- Outgoing kinetic energy is obtained from outgoing wave field (*w_i*, in DRM)
- Incoming kinetic energy is then the difference.

Jeremić at al.

A Hypothesis	Seismic Energy	ESSI Modeling	Uncertainty Aspects	Summary
	•	00000000	00	
Seismic Energy Diss	sipation			

Seismic Energy Dissipation within NPPSSS

- Mechanical dissipation outside of NPPSSS domain:
 - reflected wave radiation
 - NPP system oscillation radiation
- Mechanical dissipation/conversion inside NPPSSS:
 - plasticity of the soil/rock subdomain
 - viscous coupling of porous solid with pore fluid (air, water)
 - plasticity/damage of parts of the structure/foundation
 - viscous coupling of structure/foundation with fluids
- Numerical energy dissipation/production

A Hypothesis	Seismic Energy	ESSI Modeling	Uncertainty Aspects	Summary
		00000000 000	00 0000000000	

Outline

A Hypothesis

Seismic Energy Seismic Energy Input Seismic Energy Dissipation

ESSI Modeling Frequency and Time Domain Techniques Verification and Validation

Uncertainty Aspects

Uncertain Engineering Materials Uncertain Seismic Motions

Summary

A Hypothesis o	Seismic Energy o o	ESSI Modeling ●00000000 ○00	Uncertainty Aspects oo ooooooooooooo	Summary o	
Frequency and Time Domain Techniques					

ESSI Modeling Approaches

- Analytical (closed form) solutions
 - Limited application for realistic NPPSSCs
 - Excellent for verification studies
 - Good for initial insight
 - Potentially large modeling uncertainty!
- Numerical solutions
 - Integral Equations (Boundary Element Method, CLASSI)
 - Finite Element Methods
 - Frequency domain (SASSI, etc.), widely used, linear elastic, etc.
 - Time domain (LS-DYNA, NRC ESSI Simulator, etc.), gaining popularity, full non-linear, etc.
 - Educated developers/modelers/analysts are a must

A Hypothesis o	Seismic Energy o o	ESSI Modeling ○●○○○○○○○	Uncertainty Aspects oo oooooooooooooo	Summary o
Eroquonov and Time	Domain Toobniquos			

NRC ESSI Simulator Program: Library Centric Design

- A full 3D, non-linear Earthquake-Soil-Structure Interaction program, computer and documentation system
- MOSS library (UCD Modified OpenSees Services: trimmed, debugged, verified, documented),
- Plastic Domain Decomposition for Parallel Computing
- Finite element and material libraries (FEMtools, Template3DEP)
- Numerical utility libraries (BLAS, lapack, nDarray, matrix...)
- Solver libraries (UMFPACK, PETSc, SuperLU...)
- Graph libraries (ParMETIS)
- Domain Specific Language (DSL) library
- Verification, Validation, Educational, and Real NPPSSS Examples library

A Hypothesis o	Seismic Energy o o	ESSI Modeling oo●oooooo ooo	Uncertainty Aspects oo oooooooooooooo	Summary O
Frequency and Time	Domain Techniques			

NRC ESSI Simulator Program: Management

- Application Programming Interface (API): well documented, for all libraries and examples
- Detailed theory background
- Verification examples, extensive
- Validation examples, as available
- Educational examples, extensive
- NRC ESSI Simulation in public domain, an open source license (LPGL)
- Source files management by subversion for a large number of developers and users

A Hypothesis o	Seismic Energy o o	ESSI Modeling	Uncertainty Aspects oo ooooooooooo	Summary o	
Frequency and Time Domain Techniques					

NRC ESSI Simulator Computer

- Distributed memory parallel computer
- Very cost effective, affordable, high availability, design exportable to Companies, Regulatory Agencies, Universities
- Same architecture as large parallel supercomputers (SDSC, TACC, EarthSimulator...)
- Current version at UCD, new version to be acquired soon

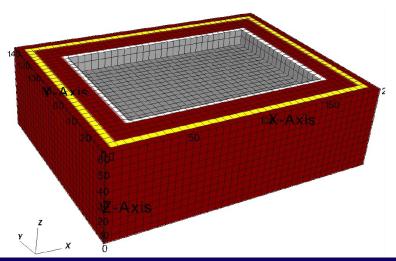
A Hypothesis o	Seismic Energy o o	ESSI Modeling 0000●0000 000	Uncertainty Aspects oo ooooooooooooo	Summary o
Frequency and Time	e Domain Techniques			

Illustrative Example: Free Field

Jeremić at al.

Hy	potł	nesi	

Seismic Energy

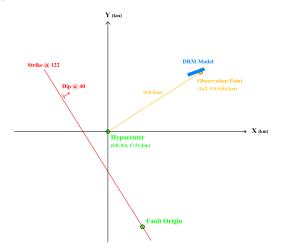

ESSI Modeling

Uncertainty Aspects

Summary o

Frequency and Time Domain Techniques

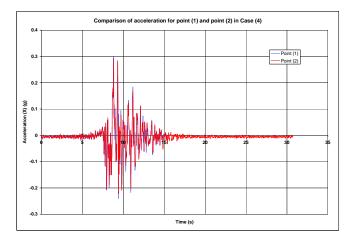
Illustrative Example: ESSI for NPPs



Jeremić at al.

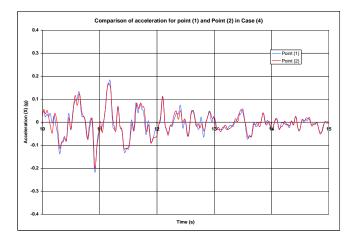
UCDAVIS

A Hypothesis o	Seismic Energy o o	ESSI Modeling oooooooooo ooo	Uncertainty Aspects oo ooooooooooo	Summary o	
Frequency and Time Domain Techniques					


Seismic Input: Green's Function and DRM

Jeremić at al.

A Hypothesis o	Seismic Energy o o	ESSI Modeling	Uncertainty Aspects oo oooooooooooooo	Summary o
Everyopey and Time	Demain Techniques			

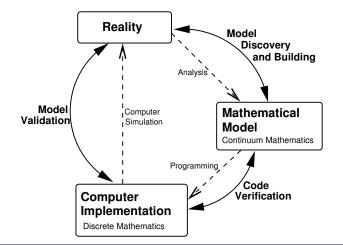

Free field Motions: Lack of Correlation

Jeremić at al.

A Hypothesis o	Seismic Energy o o	ESSI Modeling oooooooo● ooo	Uncertainty Aspects oo oooooooooooooo	Summary O
Evenuency and Time	Demain Techniques			

Free field Motions: Lack of Correlation

Jeremić at al.


A Hypothesis	Seismic Energy	ESSI Modeling	Uncertainty Aspects	Summary
		00000000	00	
		000		
Verification and Valia	lation			

Verification, Validation and Prediction

- Verification: the process of determining that a model implementation accurately represents the developer's conceptual description and specification. Mathematics issue. Verification provides evidence that the model is solved correctly
- Validation: the process of determining the degree to which a model is accurate representation of the real world from the perspective of the intended uses of the model. Physics issue. Validation provides evidence that the correct model is solved
- Prediction: use of computational model to foretell the state of an NPPSSS under conditions for which the computational model has not been validated

A Hypothesis o	Seismic Energy o	ESSI Modeling ○○○○○○○○ ○●○	Uncertainty Aspects oo oooooooooooooo	Summary o
Verification and Valio	dation			

Role of Verification and Validation

Jeremić at al.

A Hypothesis	Seismic Energy	ESSI Modeling	Uncertainty Aspects	Summary
		00000000	00	
Verification and Valia	a tian			

Verification and Validation for Prediction

- How much can (should) we trust model implementations (verification)?
- How much can (should) we trust numerical simulations (validation)?
- How good are our numerical predictions?
- Can a simulation tool (NRC ESSI Simulator) be used for assessing public safety?
- V&V procedures are the primary means of assessing accuracy, building confidence and credibility in modeling and computational simulations
- Ever present uncertainties need to be modeled and propagated through the simulation process

A Hypothesis o	Seismic Energy o o	ESSI Modeling	Uncertainty Aspects	Summary o

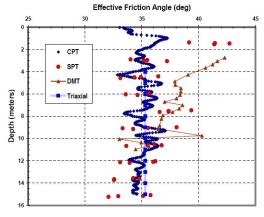
Outline

A Hypothesis

Seismic Energy Seismic Energy Input Seismic Energy Dissipation

ESSI Modeling

Frequency and Time Domain Techniques Verification and Validation


Uncertainty Aspects

Uncertain Engineering Materials Uncertain Seismic Motions

Summary

A Hypothesis o	Seismic Energy o o	ESSI Modeling	Uncertainty Aspects ●0 ○○○○○○○○○○	Summary o
Uncertain Engineering M	aterials			
Material B	ehavior Inhei	rently Uncer	tain	

- Spatial variability
- Point-wise uncertainty, testing error, transformation error

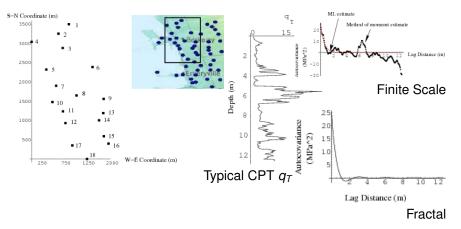
Mayne et al. (2000)

Jeremić at al.

Probabilistic Elasto-Plasticity (PEP) and Stochastic Elastic-Plastic Finite Element Method (SEPFEM)

- PEP: Eulerian–Lagrangian form of the Fokker-Planck-Kolmogorov (FPK) equation
 - Input, probability distribution of material properties
 - Output: Complete probabilistic description of response, solution is a Probability Density Function (PDF) of stress
 - Solution PDF is second-order exact to covariance of time (exact mean and variance)
- ► PEP + Spectral Stochastic Finite Element Method
 - Input: PDF for material properties (LHS), probabilistic seismic loading (RHS)
 - Output: accurate, full PDF of displacements (and u_i, ü_i), stress, strain, etc.

A Hypothesis	Seismic Energy	ESSI Modeling	Uncertainty Aspects	Summary
		000000000	00	
Uncertain Seismic M	Actions			

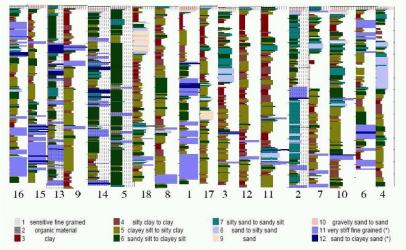

Decision About Site (Material) Characterization

- Do an inadequate site characterization (rely on experience): conservative guess for soil data, COV = 225%, large correlation length (length of a model).
- Do a good site characterization: COV = 103%, correlation length calculated (= 0.61m)
- Do an excellent (much improved) site characterization if probabilities of exceedance are unacceptable!

A Hypothesis	Seismic Energy	ESSI Modeling	Uncertainty Aspects	Summary
		000000000	00	
Uncertain Seismic M	Actions			

Random Field Parameters from Site Data

Maximum likelihood estimates



Jeremić at al.

A Hypothesis	Seismic Energy	ESSI Modeling	Uncertainty Aspects	
		00000000 000	00 00 0 0000000	

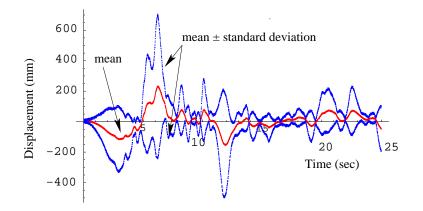
Uncertain Seismic Motions

"Uniform" CPT Site Data (Courtesy of USGS)

Jeremić at al.

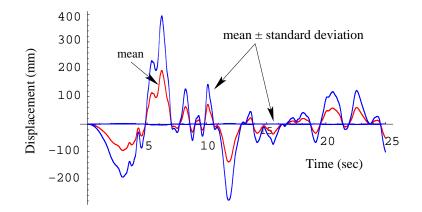
On Seismic Soil Structure Interaction Simulations for Nuclear Power Plants

Summary


A Hypothesis o	Seismic Energy o o	ESSI Modeling 00000000 000	Uncertainty Aspects ○○ ○○○●○○○○○○○	Summary o
Uncertain Seismic M	otions			

Statistics of Stochastic Soil Profile(s)

- Soil as 12.5m deep 1–D soil column (von Mises material)
 - Properties (including testing uncertainty) obtained through random field modeling of CPT *q_T* ⟨*q_T*⟩ = 4.99 *MPa*; *Var*[*q_T*] = 25.67 *MPa*²;
 Cor. Length [*q_T*] = 0.61 *m*; Testing Error = 2.78 *MPa*²
- q_T was transformed to obtain G: $G/(1 \nu) = 2.9q_T$
 - ► Assumed transformation uncertainty = 5% ⟨G⟩ = 11.57MPa; Var[G] = 142.32MPa² Cor. Length [G] = 0.61m
- Input motions: modified 1938 Imperial Valley


A Hypothesis o	Seismic Energy o	ESSI Modeling	Uncertainty Aspects ○○ ○○○○●○○○○○○	Summary o
Uncertain Seismic M	lotions			

Evolution of Mean \pm SD for Guess Case

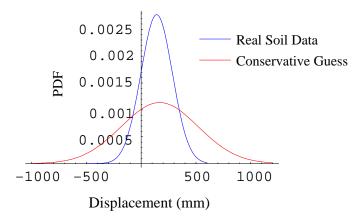
A Hypothesis o	Seismic Energy	ESSI Modeling	OC OC OCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCO	Summary o
Uncertain Seismic M	lations			

Evolution of Mean \pm SD for Real Data Case

A Hypothesis o	Seismic Energy o	ESSI Modeling	Uncertainty Aspects ○○ ○○○○○○●○○○○	Summary o
Uncertain Seismic Motic	ons			
Full PDFs	for Real Dat	a Case		
	0.06 0.04 0.02 0 -400 -200		20 15 10 10	

200

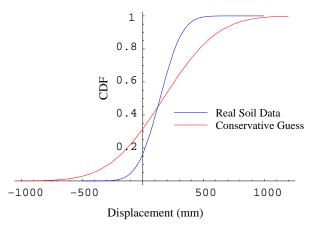
5


400

Displacement (mm)

Jeremić at al.

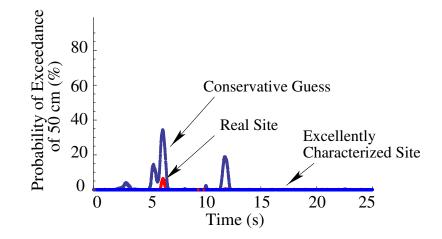
A Hypothesis	Seismic Energy	ESSI Modeling	Uncertainty Aspects	Summary
		000000000	00000000000	
Uncertain Seismic N	lotions			


Example: PDF at 6 s

Jeremić at al.

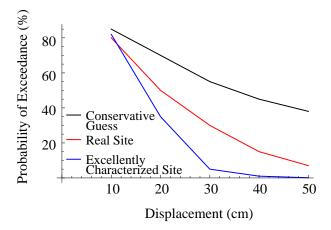
A Hypothesis o	Seismic Energy o o	ESSI Modeling 00000000 000	Uncertainty Aspects ○○ ○○○○○○○○○○○	Summary o
Uncertain Seismic Me	otions			

Example: CDF at 6 s



Jeremić at al.

UCDAVIS


A Hypothesis o	Seismic Energy o o	ESSI Modeling 00000000 000	Uncertainty Aspects ○○ ○○○○○○○○○●○	Summary o
Uncertain Seismic Motio	ons			

Probability of Unacceptable Deformation (50cm)

A Hypothesis o	Seismic Energy o o	ESSI Modeling ooooooooo ooo	Uncertainty Aspects ○○ ○○○○○○○○○○●	Summary o
Uncertain Seismic Motior	IS			

Risk Informed Decision Process

A Hypothesis o	Seismic Energy o o	ESSI Modeling 00000000 000	Uncertainty Aspects oo ooooooooooooooo	Summary o

Outline

A Hypothesis

eismic Energy Seismic Energy Input Seismic Energy Dissipation

ESSI Modeling

Frequency and Time Domain Techniques Verification and Validation

Uncertainty Aspects

Uncertain Engineering Materials Uncertain Seismic Motions

Summary

A Hypothesis o	Seismic Energy o o	ESSI Modeling	Uncertainty Aspects oo ooooooooooooooo	Summary ●

Summary

- There is a need for high fidelity modeling and simulations (verified and validated, deterministic and probabilistic) for NPPSSSs
- Such high fidelity modeling and simulations will improve safety and economy
- Education for Developers, Modelers/Analysts, Researchers, Consultants, Regulators is very important
- Presented research was/is funded in part and performed in collaboration with the Caltrans, NSF, U.S. NRC and CNSC
- CompDyn2011 Corfu, Greece, 26-28 May, Soil-Structure Interaction Mini-Symposium