Verification Procedures for Simulation of Fully Coupled Behavior of Porous Media

Boris Jeremić, Panagiota Tasiopoulou, Mahdi Taiebat, Nima Tafazzoli, Mario Martinelli

UCD, LBNL, NTUA, UBC, UCD, URoma

USNCCM11, Minneapolis, MN

Outline

Introduction

Introduction

Verification and Validation Verification

Saturated Soils Fully Coupled Formulation

Verification Suite Examples

Introduction

Verification and Validation Verification

Saturated Soils
Fully Coupled Formulation

Verification Suite Examples

- Numerical analysts, designers need the best available tools for performance assessment (numerical predictions)
- Verification and validation process ensures accuracy of numerical predictions
- How much can (should) we trust model implementations (verification)?
- How much can (should) we trust numerical simulations (validation)?
- How good are our numerical predictions?
- The T experiments
- Focus on verification

Outline

Introduction

Introduction

Verification and Validation Verification

Saturated Soils
Fully Coupled Formulatior

Verification Suite Examples

Verification, Validation, Prediction

- Verification: provides evidence that the model is solved correctly.
- Validation: provides evidence that the correct model is solved.
- Prediction: use of computational model to foretell the state of a physical system under consideration under conditions for which the computational model has not been validated

Role of Verification and Validation

Oberkampf et al.

Oden et al.

Verification

Verification: the process of determining that a model implementation accurately represents the developer's conceptual description and specification. Mathematics issue. Verification provides evidence that the model is solved correctly.

والمارية والمارية

Verification and Validation Verification

Saturated Soils Fully Coupled Formulation

Verification Suite Examples

Dynamic Equilibrium for Saturated, Coupled Systems

- Effective stress principle $\sigma'_{ii} = \sigma_{ij} + \alpha \delta_{ij} p$; $(p = -1/3\sigma_{kk})$
- Equilibrium of the mixture $\sigma_{ii,i} - \rho \ddot{u}_i - \rho_f [\ddot{w}_i + \dot{w}_i \dot{w}_{i,i}] + \rho b_i = 0$; $(\rho = n\rho_f + (1-n)\rho_s)$
- Equilibrium of the fluid $-p_{,i} - R_i - \rho_f \ddot{u}_i - \rho_f [\ddot{w}_i + \dot{w}_i \dot{w}_{i,i}]/n + \rho_f b_i = 0$; (Darcy: $n\dot{w}_i = Ki; i = h_{,i}; R_i = k_{ii}^{-1}\dot{w}_i; k_{ij} = K_{ij}/\rho_f g \ [m]^3[s]/[kg])$
- ► Flow conservation $\dot{w}_{i,i} + \alpha \dot{\varepsilon}_{ii} + \dot{p}/Q + n\dot{\rho}_f/\rho_f + \dot{s}_0 = 0$; $1/Q \equiv n/K_f + (1-n)/K_s$

Fully Coupled Formulation

Fully Coupled u - p - U Formulation

- ► Formulation: fully coupled by Zienkiewicz and Shiomi 1984), nonlinear dynamics by Argyris and Mlejnek (1991)
- Physical, velocity proportional damping from solid–fluid interaction (not using Rayleigh damping)
- Accelerations of pore fluid not neglected
 - important for SFSI
 - inertial forces of fluid allow liquefaction modeling
- Stable formulation for near incompressible pore fluid

Finite Element Discretization

$$\begin{bmatrix} (M_{s})_{KijL} & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & (M_{f})_{KijL} \end{bmatrix} \begin{bmatrix} \ddot{u}_{Lj} \\ \ddot{p}_{N} \\ \ddot{U}_{Lj} \end{bmatrix} + \\ + \begin{bmatrix} (C_{1})_{KijL} & 0 & -(C_{2})_{KijL} \\ 0 & 0 & 0 \\ -(C_{2})_{LjiK} & 0 & (C_{3})_{KijL} \end{bmatrix} \begin{bmatrix} \dot{u}_{Lj} \\ \dot{p}_{N} \\ \dot{U}_{Lj} \end{bmatrix} + \\ + \begin{bmatrix} (K^{EP})_{KijL} & -(G_{1})_{KiM} & 0 \\ -(G_{1})_{LjM} & -P_{MN} & -(G_{2})_{LjM} \\ 0 & -(G_{2})_{KiL} & 0 \end{bmatrix} \begin{bmatrix} \overline{u}_{Lj} \\ \overline{p}_{M} \\ \overline{U}_{Lj} \end{bmatrix} = \begin{bmatrix} \overline{f}_{Ki}^{solid} \\ f_{Ki}^{fluid} \\ \overline{f}_{Ki}^{fluid} \end{bmatrix}$$

Fully Coupled Formulation

Finite Element Discretization

$$(M_s)_{KijL} = \int_{\Omega} N_K^u (1-n) \rho_s \delta_{ij} N_L^u d\Omega \qquad ; \qquad (M_f)_{KijL} = \int_{\Omega} N_K^U n \rho_f \delta_{ij} N_L^U d\Omega$$

$$(C_1)_{KijL} = \int_{\Omega} N_K^u n^2 k_{ij}^{-1} N_L^u d\Omega \qquad ; \qquad (C_2)_{KijL} = \int_{\Omega} N_K^u n^2 k_{ij}^{-1} N_L^U d\Omega$$

$$(C_3)_{KijL} = \int_{\Omega} N_K^U n^2 k_{ij}^{-1} N_L^U d\Omega \qquad ; \qquad (K^{EP})_{KijL} = \int_{\Omega} N_{K,m}^u D_{imjn} N_{L,n}^u d\Omega$$

$$(G_1)_{KiM} = \int_{\Omega} N_{K,i}^u (\alpha - n) N_M^p d\Omega \qquad ; \qquad (G_2)_{KiM} = \int_{\Omega} n N_{K,i}^U N_M^p d\Omega$$

$$P_{NM} = \int_{\Omega} N_N^p \frac{1}{Q} N_M^p d\Omega$$

Finite Element Discretization

$$egin{array}{lll} ar{f}_{Ki}^{solid} &=& \int_{\Gamma_t} N_K^{\it u} n_j \sigma_{ij}^{\it u} d\Gamma - \ && \int_{\Gamma_p} N_K^{\it u} (lpha - n) n_i p d\Gamma \ && + \int_{\Omega} N_K^{\it u} (1-n)
ho_s b_i d\Omega \ && ar{f}_{Ki}^{fluid} &=& - \int_{\Gamma_p} n N_K^{\it U} n_i p d\Gamma \ && + \int_{\Omega} n N_K^{\it U}
ho_f b_i d\Omega \end{array}$$

Introduction

Verification and Validation Verification

Saturated Soils
Fully Coupled Formulation

Verification Suite Examples

Verification Suite

- Code Verification
 - Memory
 - Function call arguments
 - Code coverage
 - Argument bounds
 - Compiler warnings
- Computational Solution Verification
 - Drilling of a well [Coussy 04]
 - The Case of a Spherical Cavity [Coussy 04]
 - Consolidation of a Soil Layer [Coussy 95]
 - Line Injection of a fluid in a Reservoir [Coussy 95]
 - Wave propagation, step displacement [Gajo and Mongiovi 95]
 - Wave propagation, step velocity loading [de Boer et al. 93]
 - Wave propagation, step force loading [Hiremath et al. 88]

Vertical Consolidation

Vertical Consolidation: Normalized Excess Pore Pressure

......... Numerical Analysis

Analytical Solution

Shock Wave Propagation, Step Displacement

Shock Wave Propagation: Step Displacement

Shock Wave Propagation: Porous Solid

Shock Wave Propagation: Pore Fluid

Outline

Introduction

Introduction

Verification and Validation Verification

Saturated Soils
Fully Coupled Formulation

Verification Suite Examples

- Importance of verification and validation for numerical predictions
- Numerical predictions under uncertainty
- Would you trust numerical simulations (for design/regulation/evaluation) if your program of choice (simulation tool) did not follow (extensive) verification and validation procedures?

