Applications to Risk Analysis

UCDAVIS

Stochastic Elastic-Plastic Finite Element Method for Performance Risk Simulations

Boris Jeremić¹ Kallol Sett²

¹University of California, Davis

²University of Akron, Ohio

ICASP Zürich, Switzerland August 2011

Jeremić and Sett

Applications to Risk Analysis

UCDAVIS

Outline

Motivation

Probabilistic Elasto-Plasticity

PEP Formulations Stochastic Elastic–Plastic Finite Element Method

Applications to Risk Analysis

Seismic Wave Propagation Through Uncertain Soils Probabilistic Analysis for Decision Making

Summary

Jeremić and Sett

Applications to Risk Analysis

Determining Risk for Civil Engineering Object Behavior

- Risk: inherent, intrinsic, constitutive part of civil engineering
- Uncertain loads (!)
- Uncertain materials (!!)
- Uncertain human factor (!)

 $\mathbf{M}\ddot{\mathbf{u}}+\mathbf{C}\dot{\mathbf{u}}+\mathbf{K}\mathbf{u}=\mathbf{F}$

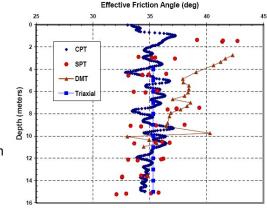
Jeremić and Sett

Computational Geomechanics Group

Applications to Risk Analysis

Material Behavior Inherently Uncertain

- Spatial variability
- Point-wise uncertainty
 - testing error
 - transformation error



(Mayne et al. (2000)

UCDAVIS

Jeremić and Sett

Applications to Risk Analysis

UCDAVIS

PEP Formulations

Outline

Motivation

Probabilistic Elasto-Plasticity

PEP Formulations

Stochastic Elastic-Plastic Finite Element Method

Applications to Risk Analysis

Seismic Wave Propagation Through Uncertain Soils Probabilistic Analysis for Decision Making

Summary

Jeremić and Sett

Applications to Risk Analysis

Summary

UCDAVIS

PEP Formulations

Uncertainty Propagation through Constitutive Eq.

► Incremental el-pl constitutive equation $\frac{d\sigma_{ij}}{dt} = D_{ijkl} \frac{d\epsilon_{kl}}{dt}$

$$D_{ijkl} = \left\{ egin{array}{ll} D^{el}_{ijkl} & ext{for elastic} \ D^{el}_{ijkl} - rac{D^{el}_{ijmn}m_{mn}n_{pq}D^{el}_{pqkl}}{n_{rs}D^{el}_{rstu}m_{tu} - \xi_*r_*} & ext{for elastic-plastic} \end{array}
ight.$$

- What if all (any) material parameters are uncertain
- Since material is inherently spatially variable and uncertain at the point, PEP and SEPFEM methods were developed

Jeremić and Sett

Applications to Risk Analysis

PEP Formulations

Solution to Probabilistic Elastic-Plastic Problem

- Use of stochastic continuity (Liouiville) equation (Kubo 1963)
- With cumulant expansion method (Kavvas and Karakas 1996)
- ► To obtain ensemble average form of Liouville Equation
- Which, with van Kampen's Lemma (van Kampen 1976): ensemble average of phase density is the probability density
- Yields Eulerian-Lagrangian form of the Forward Kolmogorov (Fokker-Planck-Kolmogorov) equation

Jeremić and Sett

Applications to Risk Analysis

Summary

UCDAVIS of Alignment

PEP Formulations

Eulerian–Lagrangian FPK Equation

$$\begin{split} \frac{\partial P(\sigma_{ij}(x_{t},t),t)}{\partial t} &= \frac{\partial}{\partial \sigma_{mn}} \left[\left\{ \left\langle \eta_{mn}(\sigma_{mn}(x_{t},t), D_{mnrs}(x_{t}), \epsilon_{rs}(x_{t},t)) \right\rangle \right. \\ &+ \int_{0}^{t} d\tau Cov_{0} \left[\frac{\partial \eta_{mn}(\sigma_{mn}(x_{t},t), D_{mnrs}(x_{t}), \epsilon_{rs}(x_{t},t)))}{\partial \sigma_{ab}}; \\ &\eta_{ab}(\sigma_{ab}(x_{t-\tau},t-\tau), D_{abcd}(x_{t-\tau}), \epsilon_{cd}(x_{t-\tau},t-\tau)) \right] \right\} P(\sigma_{ij}(x_{t},t),t) \right] \\ &+ \left. \frac{\partial^{2}}{\partial \sigma_{mn}\partial \sigma_{ab}} \left[\left\{ \int_{0}^{t} d\tau Cov_{0} \left[\eta_{mn}(\sigma_{mn}(x_{t},t), D_{mnrs}(x_{t}), \epsilon_{rs}(x_{t},t)); \\ \eta_{ab}(\sigma_{ab}(x_{t-\tau},t-\tau), D_{abcd}(x_{t-\tau}), \epsilon_{cd}(x_{t-\tau},t-\tau)) \right] \right\} P(\sigma_{ij}(x_{t},t),t) \right] \end{split}$$

Jeremić and Sett

Computational Geomechanics Group

Applications to Risk Analysis

Summary

UCDAVIS

PEP Formulations

Eulerian–Lagrangian FPK Equation

Advection-diffusion equation

$$\frac{\partial \boldsymbol{P}(\sigma_{ij},t)}{\partial t} = -\frac{\partial}{\partial \sigma_{ab}} \left[\boldsymbol{N}_{ab}^{(1)} \boldsymbol{P}(\sigma_{ij},t) - \frac{\partial}{\partial \sigma_{cd}} \left\{ \boldsymbol{N}_{abcd}^{(2)} \boldsymbol{P}(\sigma_{ij},t) \right\} \right]$$

- Complete probabilistic description of response
- Solution PDF is second-order exact to covariance of time (exact mean and variance)
- Deterministic equation in probability density space
- ► Linear PDE in probability density space → simplifies the numerical solution process
- Applicable to any elastic-plastic-damage material model (only coefficients N⁽¹⁾_{ab} and N⁽²⁾_{abcd} differ)

Jeremić and Sett

Probabilistic Elasto-Plasticity

Applications to Risk Analysis

Summary

UCDAVIS

PEP Formulations

Probabilistic Elastic-Plastic Response



Jeremić and Sett

Computational Geomechanics Group

Applications to Risk Analysis

Summary

UCDAVIS

SEPFEM

Outline

Motivation

Probabilistic Elasto-Plasticity

PEP Formulations

Stochastic Elastic-Plastic Finite Element Method

Applications to Risk Analysis

Seismic Wave Propagation Through Uncertain Soils Probabilistic Analysis for Decision Making

Summary

Jeremić and Sett

Applications to Risk Analysis

SEPFEM

Governing Equations & Discretization Scheme

Governing equations:

$$A\sigma = \phi(t)$$
 $Bu = \epsilon$ $\sigma = \mathbf{D}\epsilon$

- Discretization (spatial and stochastic) schemes
 - ► Input random field material properties (D) → Karhunen–Loève (KL) expansion, optimal expansion, error minimizing property
 - ► Unknown solution random field (u) → Polynomial Chaos (PC) expansion
 - ► Deterministic spatial differential operators (A & B) \rightarrow Regular shape function method with Galerkin scheme

Jeremić and Sett

Applications to Risk Analysis

UCDAVIS

SEPFEM

Spectral Stochastic Elastic–Plastic FEM

 Minimizing norm of error of finite representation using Galerkin technique (Ghanem and Spanos 2003):

Jeremić and Sett

Computational Geomechanics Group

UCDAVIS

SEPFEM

Inside SEPFEM

- Stochastic elastic–plastic (explicit) finite element computations
- FPK probabilistic constitutive integration at Gauss integration points
- Increase in (stochastic) dimensions (KL and PC) of the problem
- Development of the probabilistic elastic-plastic stiffness tensor

Jeremić and Sett

Probabilistic Elasto-Plasticity

Applications to Risk Analysis

Summary

UCDAVIS

Seismic Wave Propagation Through Uncertain Soils

Outline

Motivation

Probabilistic Elasto–Plasticity PEP Formulations Stochastic Elastic–Plastic Finite Element Method

Applications to Risk Analysis

Seismic Wave Propagation Through Uncertain Soils Probabilistic Analysis for Decision Making

Summary

Jeremić and Sett

Applications to Risk Analysis

Summary

Seismic Wave Propagation Through Uncertain Soils

Risk Assessment Applications

- Any problem ($M\ddot{u} + C\dot{u} + Ku = F$) with known
 - PDFs of material parameters,
 - PDFs of loading

can be analyzed using PEP and SEPFEM to obtain PDFs of DOFs, stress, strain...

- PEP solution is second order accurate (exact mean and standard deviation)
- SEPFEM solution (PDFs) can be made as accurate as need be
- Tails of PDFs can than be used to develop accurate risk
- Application to a realistic case of seismic wave propagation

Jeremić and Sett

Computational Geomechanics Group

Probabilistic Elasto-Plasticity

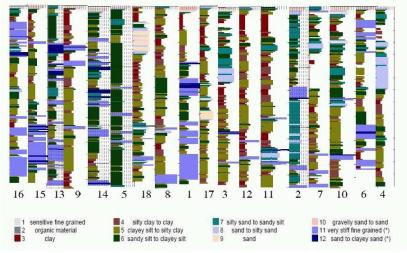
Applications to Risk Analysis

Summary

UCDAVIS

Seismic Wave Propagation Through Uncertain Soils

"Uniform" CPT Site Data



Jeremić and Sett

Computational Geomechanics Group

Applications to Risk Analysis

Seismic Wave Propagation Through Uncertain Soils

Seismic Wave Propagation through Stochastic Soil

- Soil as 12.5 m deep 1–D soil column (von Mises Material)
 - Properties (including testing uncertainty) obtained through random field modeling of CPT *q*_T
 ⟨*q*_T⟩ = 4.99 *MPa*; *Var*[*q*_T] = 25.67 *MPa*²;
 Cor. Length [*q*_T] = 0.61 *m*; Testing Error = 2.78 *MPa*²
- q_T was transformed to obtain G: $G/(1 \nu) = 2.9q_T$
 - ► Assumed transformation uncertainty = 5% ⟨G⟩ = 11.57MPa; Var[G] = 142.32MPa² Cor. Length [G] = 0.61m
- Input motions: modified 1938 Imperial Valley

Jeremić and Sett

Computational Geomechanics Group

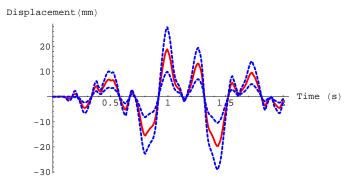
Probabilistic Elasto–Plasticity

Applications to Risk Analysis

UCDAVIS

Seismic Wave Propagation Through Uncertain Soils

Seismic Wave Propagation through Stochastic Soil



$Mean \pm Standard Deviation$

Jeremić and Sett

Computational Geomechanics Group

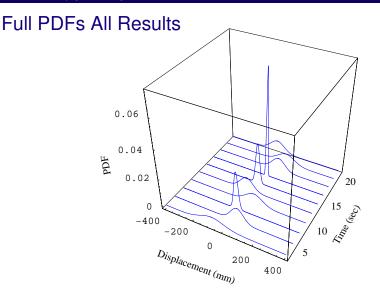
Probabilistic Elasto–Plasticity

Applications to Risk Analysis ○○○○○● ○○○○○○

Summary

UCDAVIS of Antersity

Seismic Wave Propagation Through Uncertain Soils



Jeremić and Sett

Computational Geomechanics Group

Probabilistic Elasto-Plasticity

Applications to Risk Analysis

Summary

Probabilistic Analysis for Decision Making

Outline

Motivation

Probabilistic Elasto–Plasticity PEP Formulations Stochastic Elastic–Plastic Finite Element Method

Applications to Risk Analysis

Seismic Wave Propagation Through Uncertain Soils Probabilistic Analysis for Decision Making

Summary

Jeremić and Sett

Computational Geomechanics Group

Applications to Risk Analysis

Probabilistic Analysis for Decision Making

Example: Three Approaches to Modeling

- Do nothing about site (material) characterization (rely on experience): conservative guess for soil data, COV = 225%, correlation length = 12m.
- Do better than standard site (material) characterization:
 COV = 103%, correlation length = 0.61m)
- Do the best site (material) characterization to reduce probabilities of exceedance

Jeremić and Sett

Computational Geomechanics Group

Probabilistic Elasto-Plasticity

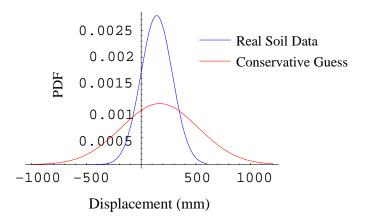
Applications to Risk Analysis

Summary

UCDAVIS of Aniversit

Probabilistic Analysis for Decision Making

Example: PDF at 6 s



Jeremić and Sett

Probabilistic Elasto-Plasticity

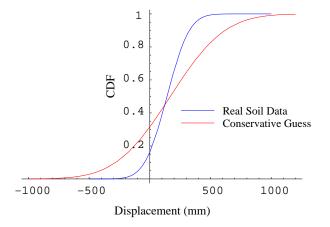
Applications to Risk Analysis

Summary

UCDAVIS of

Probabilistic Analysis for Decision Making

Example: CDF (Non-Exceedance) at 6 s



Jeremić and Sett

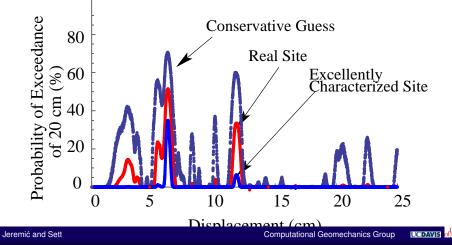
Probabilistic Elasto-Plasticity

Applications to Risk Analysis

Summary

Probabilistic Analysis for Decision Making

Probability of Exceedance of 20cm



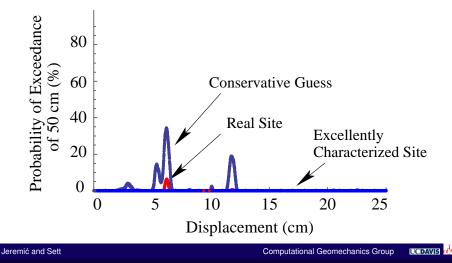
Probabilistic Elasto-Plasticity

Applications to Risk Analysis

Summary

Probabilistic Analysis for Decision Making

Probability of Exceedance of 50cm



Probabilistic Elasto-Plasticity

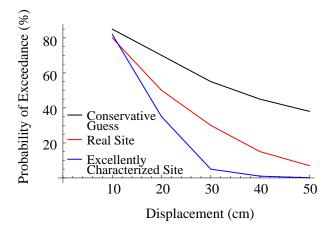
Applications to Risk Analysis

Summary

UCDAVIS of

Probabilistic Analysis for Decision Making

Risk of Unacceptable Deformation



Jeremić and Sett

UCDAVIS

Summary

- Behavior of all civil engineering objects (structures, soils...) is probably probabilistic!
- Presented methodology (PEP and SEPFEM) allows for (very) accurate numerical simulation of PDFs of DOFs (and stress, strain) from known (given) PDFs of material properties and PDFs of loads.
- Human nature: how much do you want to know about potential problem?

Jeremić and Sett