3D Analysis of the Influence of Varying Rock/Soil Profiles on Seismic NPP Response

B. Jeremić, N. Tafazzoli, N. Orbović, A. Blahoianu

University of California, Davis, CA, U.S.A.
Canadian Nuclear Safety Commission, Ottawa, ON, Canada

SMiRT 21, New Delhi, India, November 2011
Outline

Introduction

The Issues and Modelling Approaches
 The Problem
 The Modelling

Simulations Results
 Variable Single Layer Base: Soil or Rock
 Variable Thickness Soil Layer

Summary
Outline

Introduction

The Issues and Modelling Approaches
 The Problem
 The Modelling

Simulations Results
 Variable Single Layer Base: Soil or Rock
 Variable Thickness Soil Layer

Summary
Introduction

- High fidelity numerical simulations of seismic effects on NPPs
 - Realistic seismic motions (3D, inclined motions, surface and body waves, lack of correlation, etc.)
 - Realistic solids and structures modeling

- Understanding 3D, inclined waves and their interaction with variable soil/rock profiles
Outline

Introduction

The Issues and Modelling Approaches
- The Problem
- The Modelling

Simulations Results
- Variable Single Layer Base: Soil or Rock
- Variable Thickness Soil Layer

Summary
Seismic Motions

- Seismic motions: Body (SV, SH, P) and Surface (Rayleigh, Love) waves
- 3D, inclined, uncorrelated (incoherent)
- Effects of soil/rock layers on motions
Spatial Variability (Incoherence, Lack of Correlation)

- Attenuation effects,
- Wave passage effects,
- Scattering effects,
- Extended source effects
Seismic Motion Development

- Green’s functions regional model up to 15Hz
- Prof. Hisada’s code
- Seismic waves propagated to NPP site
- Motions input using the Domain Reduction Method
- Lack of correlation inherent in regional ground motion modeling
Uncorrelated/Incoherent Motions for Rock and Soil

- Original lack of correlation
- T. Ancheta development
- Further lack of correlation added using Abrahamson models for rock and soil (assuming ergodicity)
Finite Element Models for the NPP

- Wave propagation with small error for given frequencies
 - $v_s = 2600\text{m/s}$, $h = 5\text{m}$, $f_{\text{max}} = 65\text{Hz}$
 - $v_s = 1500\text{m/s}$, $h = 5\text{m}$, $f_{\text{max}} = 37\text{Hz}$
 - $v_s = 1000\text{m/s}$, $h = 5\text{m}$, $f_{\text{max}} = 25\text{Hz}$
 - $v_s = 300\text{m/s}$, $h = 5\text{m}$, $f_{\text{max}} = 7\text{Hz}$
- Free field, surface and embedded foundations

Jeremić et al.
Varying Rock/Soil Profiles
3D Embedded Foundation Models
Outline

Introduction

The Issues and Modelling Approaches
The Problem
The Modelling

Simulations Results
Variable Single Layer Base: Soil or Rock
Variable Thickness Soil Layer

Summary
Variable Single Layer Base: Soil or Rock

- Four uniform rock/soil profiles
 - Case 1: $V_s = 2600\text{m/s}$
 - Case 2: $V_s = 1500\text{m/s}$
 - Case 4: $V_s = 1000\text{m/s}$
 - Case 8: $V_s = 300\text{m/s}$

- Gradual rise in stiffness 500m below uniform rock profiles

- Full 3D, inclined, uncorrelated motions, including body and surface waves, input using DRM
Base of the Internal Struct. on Surface Foundation

![Graph showing Fourier Amplitude (X) vs Frequency (Hz) with different cases](image)

- **Case 1**
- **Case 2**
- **Case 4**
- **Case 8**
Top of the Internal Struct. on Surface Foundation

Jeremić et al.

Varying Rock/Soil Profiles
Variable Thickness Soil Layer

- Four variable thickness soil ($V_s = 300$ m/s) profiles
 - Case 6: $H_{soil} = 500$ m
 - Case 5: $H_{soil} = 200$ m
 - Case 10: $H_{soil} = 100$ m
 - Case 12: $H_{soil} = 50$ m

- Stiff rock $V_s = 2600$ m/s beneath these soil profiles

- Full 3D, inclined, uncorrelated motions, including body and surface waves, input using DRM
Base of the Internal Struct. on Surface Foundation

![Graph showing Fourier Amplitude (X) vs. Frequency (Hz) for different cases.](image-url)
Top of the Internal Struct. on Surface Foundation

![Graph showing Fourier Amplitude (X) versus Frequency [Hz] for different cases.]

- Case 5
- Case 6
- Case 10
- Case 12

Jeremić et al.

Varying Rock/Soil Profiles
Outline

Introduction

The Issues and Modelling Approaches
The Problem
The Modelling

Simulations Results
Variable Single Layer Base: Soil or Rock
Variable Thickness Soil Layer

Summary
Summary

- Realistic seismic motions (3D, inclined, uncorrelated, body and surface waves) do influence NPP ESSI response for variable soil/rock conditions

- Influences do vary in significance but are always present and need to be modeled and simulated

- Importance of high fidelity modeling to reduce modeling uncertainty

- Funding by and Collaboration with the CNSC is gratefully acknowledged