Challenges and Tools for Non-Linear SSI Analysis

Boris Jeremić

University of California, Davis
Lawrence Berkeley National Laboratory, Berkeley

UCB SSI Meeting, January 2013
Presentation Goals

- Briefly overview of most important current challenges for SSI modeling and simulation (personal view)
- Briefly overview select current work that aims to address some of those challenges
- Hope for a discussion/information about validation experiments (we are done with the verification for the most part)
Outline

Current Challenges
 Modeling Uncertainty
 Uncertainty in Material Behavior/Properties
 Verification and Validation

Brief Overview of Select Modeling and Simulations Tools
 NRC ESSI Simulator System
 Pisanò Material Model
 Fragility Curve Simulations

Summary and Credits

Jeremić

Challenges and Tools for Non-Linear SSI Analysis
Outline

Current Challenges
Modeling Uncertainty
Uncertainty in Material Behavior/Properties
Verification and Validation

Brief Overview of Select Modeling and Simulations Tools
NRC ESSI Simulator System
Pisanò Material Model
Fragility Curve Simulations

Summary and Credits
Modeling Uncertainty

- Simplified (or inadequate/wrong) modeling: important features are missed (seismic ground motions, etc.)

- Introduction of uncertainty and (unknown) lack of accuracy in results due to use of un-verified simulation tools (software quality, etc.)

- Introduction of uncertainty and (unknown) lack of accuracy in results due to use of un-validated models (due to lack of quality validation experiments)
Complexity of and Uncertainty in Ground Motions

- 6D (3 translations, 3 rotations)
- Vertical motions usually neglected
- Rotational components usually not measured and neglected
- Lack of models for such 6D motions (from measured data)
- Sources of uncertainties in ground motions (source, path (rock), soil (rock))
Errors in Scientific Software: The T Experiments

- Les Hatton, Kingston University (formerly of Oakwood Comp. Assoc.)

- "Extensive tests showed that many software codes widely used in science and engineering are not as accurate as we would like to think."

- "Better software engineering practices would help solve this problem,"

- "Realizing that the problem exists is an important first step."

- Large experiment over 4 years measuring faults (T1) and failures (T2) of scientific and engineering codes
The T2 Experiments

- Specific application area: seismic data processing (inverse analysis)
- Echo sounding of underground and reconstructing "images" of subsurface geological structure
- Nine mature packages, using same algorithms, on a same data set!
- 14 primary calibration points for results check
- Results "fascinating and disturbing"
T2: Disagreement at Calibration Points
Outline

Current Challenges
- Modeling Uncertainty
- Uncertainty in Material Behavior/Properties
- Verification and Validation

Brief Overview of Select Modeling and Simulations Tools
- NRC ESSI Simulator System
- Pisanò Material Model
- Fragility Curve Simulations

Summary and Credits
Material Behavior Inherently Uncertain

- Spatial variability
- Point-wise uncertainty, testing error, transformation error

(Mayne et al. (2000))
Soil Uncertainties and Quantification

- Natural variability of soil deposit (Fenton 1999)
 - Function of soil formation process

- Testing error (Stokoe et al. 2004)
 - Imperfection of instruments
 - Error in methods to register quantities

- Transformation error (Phoon and Kulhawy 1999)
 - Correlation by empirical data fitting (e.g. CPT data \rightarrow friction angle etc.)
SPT Based Determination of Shear Strength

Transformation of SPT N-value → undrained shear strength, s_u (cf. Phoon and Kulhawy (1999B))

Histogram of the residual (w.r.t the deterministic transformation equation) undrained strength, along with fitted probability density function (Pearson IV)

$S_u = (101.125 \times 0.29) N^{0.72}$
SPT Based Determination of Young’s Modulus

Transformation of SPT N-value \rightarrow 1-D Young’s modulus, E (cf. Phoon and Kulhawy (1999B))

Histogram of the residual (w.r.t the deterministic transformation equation) Young’s modulus, along with fitted probability density function
Outline

Current Challenges
 Modeling Uncertainty
 Uncertainty in Material Behavior/Properties
 Verification and Validation

Brief Overview of Select Modeling and Simulations Tools
 NRC ESSI Simulator System
 Pisanò Material Model
 Fragility Curve Simulations

Summary and Credits
Verification & Validation (V&V) Definition

- **Verification**: The process of determining that a model implementation accurately represents the developer’s conceptual description and specification. Mathematics issue. *Verification provides evidence that the model is solved correctly.*

- **Validation**: The process of determining the degree to which a model is accurate representation of the real world from the perspective of the intended uses of the model. Physics issue. *Validation provides evidence that the correct model is solved.*
Importance of V&V

- V & V procedures are the primary means of assessing accuracy in modeling and computational simulations.

- V & V procedures are the tools with which we build confidence and credibility in modeling and computational simulations.
Role of Verification and Validation

Oden et al.
Types of Physical Experiments

- **Traditional Experiments**
 - Improve the fundamental understanding of physics involved
 - Improve the mathematical models for physical phenomena
 - Assess component performance

- **Validation Experiments**
 - Model validation experiments
 - Designed and executed to quantitatively estimate mathematical model’s ability to simulate well defined physical behavior
 - The simulation tool (SimTool) (conceptual model, computational model, computational solution) is the customer
 - Experimental uncertainty analysis!
Validation and Application Domains – No Overlap

- Inference \Rightarrow probabilistic modeling and numerical simulation (deterministic is a special case)
Prediction

- Prediction: use of computational model to foretell the state of a physical system under consideration under conditions for which the computational model has not been validated

- Validation does not directly make a claim about the accuracy of a prediction
 - Computational models are easily misused (unintentionally or intentionally)
 - How closely related are the conditions of the prediction and specific cases in validation database
 - How well is physics of the problem understood
Outline

Current Challenges
Modeling Uncertainty
Uncertainty in Material Behavior/Properties
Verification and Validation

Brief Overview of Select Modeling and Simulations Tools
NRC ESSI Simulator System
Pisanò Material Model
Fragility Curve Simulations

Summary and Credits
NRC ESSI Simulator System

- **The NRC-ESSI-Program** is a 3D, nonlinear, time domain, parallel finite element program specifically developed for Hi-Fi modeling and simulation of Earthquake Soil/Rock Structure Interaction (ESSI) problems for NPPs on NRC-ESSI-Computer.

- **The NRC-ESSI-Computer** is a distributed memory parallel computer, with multiple performance processors and multiple performance networks.

- **The NRC-ESSI-Notes** is a hypertext documentation system detailing modeling and simulation of NPP ESSI problems.
NRC ESSI Simulator Program

- Based on a Collection of Useful Libraries (library centric software design, modular, portable)
- A number of models, elements and algorithms available
- Detailed V&V (actually, good validation experiments are rare!)
- Current users, testers, collaborators: US-NRC, UCD students, National Laboratories, Foreign Nuclear Regulatory Agencies, Nuclear Power Companies
NRC ESSI Simulator Computer

A distributed memory parallel (DMP) computer designed for high performance, parallel finite element simulations

- Multiple performance CPUs and Networks
- Most cost-performance effective
- Source compatibility with any DMP supercomputers
- Current system: 208 CPUs (near future: 784 CPUs)
NRC ESSI Simulator Notes

A hypertext documentation system describing in detail modeling and simulations of NPP ESSI problems

Part I: Theoretical and Computational Formulations

Part II: Software and Hardware Platform Design

Part III: Verification and Validation

Part IV: Application to Practical Nuclear Power Plant Earthquake Soil/Rock Structure Interaction Problems
Outline

Current Challenges
 Modeling Uncertainty
 Uncertainty in Material Behavior/Properties
 Verification and Validation

Brief Overview of Select Modeling and Simulations Tools
 NRC ESSI Simulator System
 Pisanò Material Model
 Fragility Curve Simulations

Summary and Credits
Pisanò Material Model: Brief Description

- Primary modeling objective: calibration of a 3D elastic-plastic model from G/G_{max} and damping curves
- 3D elastic-plastic material model, with vanishing elastic region, rotational kinematic hardening, bounding surface, and stress split into frictional and viscous components
- No volume change data (since it is missing in G/G_{max} and damping curve data), however, volume modeling can be calibrated as well if data is available
Pure Shear Cyclic

\[\tau \text{ [kPa]} \]
\[\gamma \text{ [%]} \]

- frictional
- frictional+viscous

Challenges and Tools for Non-Linear SSI Analysis
Calibration for G/G_{max} and Damping

Figure: Comparison between experimental and simulated G/G_{max} and damping curves ($p_0=100$ kPa, $T=2\pi$ s, $\zeta = 0.003$, $G_{max} = 4$ MPa, $\nu=0.25$, $M=1.2$, $k_d=\xi=0$, $h=G_{max}/(15p_0)$, $m=1$)
Variation in Viscous Damping

Figure: Damping curves simulated at varying ζ_0 ($p_0=100$ kPa, $T=2\pi$ s, $G_{max} = 4$ MPa, $\nu=0.25$, $M=1.2$, $k_d=\xi=0$, $h=G_{max}/(15p_0)$, $m=1$)
Outline

Current Challenges
Modeling Uncertainty
Uncertainty in Material Behavior/Properties
Verification and Validation

Brief Overview of Select Modeling and Simulations Tools
NRC ESSI Simulator System
Pisanò Material Model
Fragility Curve Simulations

Summary and Credits
"Uniform" CPT Site Data

1. sensitive fine grained
2. organic material
3. clay
4. silty clay to clay
5. clayey silt to silty clay
6. sandy silt to clayey silt
7. silty sand to sandy silt
8. sand to silty sand
9. sand
10. gravelly sand to sand
11. very stiff fine grained (*)
12. sand to clayey sand (*)
Seismic Wave Propagation through Stochastic Soil

- Maximum likelihood estimates

Finite Scale
Typical CPT q_T

Fractal
Random Field Parameters from Site Data

- Soil as 12.5 m deep 1-D soil column (von Mises Material)
 - Properties (including testing uncertainty) obtained through random field modeling of CPT q_T
 \[
 \langle q_T \rangle = 4.99 \text{ MPa}; \quad \text{Var}[q_T] = 25.67 \text{ MPa}^2; \\
 \text{Cor. Length } [q_T] = 0.61 \text{ m}; \quad \text{Testing Error} = 2.78 \text{ MPa}^2
 \]
 - q_T was transformed to obtain G: \[G/(1-\nu) = 2.9q_T\]
 - Assumed transformation uncertainty = 5%
 \[
 \langle G \rangle = 11.57 \text{ MPa}; \quad \text{Var}[G] = 142.32 \text{ MPa}^2 \\
 \text{Cor. Length } [G] = 0.61 \text{ m}
 \]
- Input motions: modified 1938 Imperial Valley
- Use of \textbf{Probabilistic Elasto-Plasticity} and \textbf{Stochastic Elastic-Plastic Finite Element Method}
Full PDFs of all DOFs (and σ_{ij}, ϵ_{ij}, etc.)

- Stochastic Elastic-Plastic Finite Element Method (SEPFEM)
- Dynamic case
- Full PDF at each time step Δt
PDF at each Δt (say at 6 s)
PDF \rightarrow CDF (Fragility) at 6 s

CDF

Displacement (mm)

Real Soil Data
Conservative Guess

 Jeremić

Challenges and Tools for Non-Linear SSI Analysis
Probability of Unacceptable Deformation (say 50cm)

- Conservative Guess
- Real Site
- Excellently Characterized Site

<table>
<thead>
<tr>
<th>Time (s)</th>
<th>Probability of Exceedance of 50 cm (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>20</td>
</tr>
<tr>
<td>10</td>
<td>40</td>
</tr>
<tr>
<td>15</td>
<td>60</td>
</tr>
<tr>
<td>20</td>
<td>80</td>
</tr>
<tr>
<td>25</td>
<td>0</td>
</tr>
</tbody>
</table>
Summary and Credits

- **Interplay** of uncertain earthquake, uncertain soil/rock, and uncertain structure in time domain, probably plays a decisive role in seismic performance of NPPs.
- Improve risk informed decision making through **high fidelity** deterministic and stochastic elastic-plastic finite element modeling and simulation.
- **Education** and **Training** are essential!
- Post-Docs and Students: Tafazzoli, Pisanò, Martinelli, Kamrani, Abell, Jeong, Aldridge, Anderson.
- Acknowledgement: funding from and collaboration with the US-NRC, CNSC and funding from NSF and DOE is much appreciated.