Motivation	ESSI Simulator System	Modeling and Applications	Current Work	Summary 00

ESSI Simulator Program, Current Status

N. Tafazzoli, F. Pisanò, J. A. Abbel M., B. Kamrani, C.-G. Jeong, B. Aldridge, R. Roche, A. Kammerer, and

B. Jeremić,

Professor, University of California, Davis, CA Faculty Scientist, Lawrence Berkeley National Laboratory, Berkeley, CA

SMiRT 22 San Francisco, August 2013

Jeremić

Motivation	ESSI Simulator System	Modeling and Applications	Current Work ○	Summary 00

Outline

Motivation

ESSI Simulator System ESSI Simulator System

Modeling and Applications

Pisanò Model, G/G_{max} and Damping Curves Contact Base Isolation

Current Work

Summary

Jeremić

Motivation ●○○	ESSI Simulator System	Modeling and Applications	Current Work o	Summary 00
Motivation				

The Problem

- Modeling and simulation of a realistic nonlinear seismic response of Nuclear Power Plants
- 3D, inclined seismic motions consisting of body and surface waves
- Inelastic (elastic, damage, plastic) behavior of materials and components: soil, rock, contacts, seismic isolators, concrete, steel, etc.
- Full coupling of pore fluids (in soil and rock and contacts) with soil/rock skeleton
- Uncertainty in seismic sources, path, soil/rock and structural response

Motivation ○●○	ESSI Simulator System	Modeling and Applications	Current Work	Summary 00
Motivation				

Proposed Solution

- Physics based modeling and simulation (reduce modeling uncertainty) of seismic behavior of soil-structure systems (NPP structures, components and systems)
- Development and use of high fidelity time domain, nonlinear numerical models, in deterministic and probabilistic spaces
- Accurate following of the flow of seismic energy (input and dissipation) within soil-structure NPP system

Motivation ○○●	ESSI Simulator System	Modeling and Applications	Current Work o	Summary 00
Motivation				

High Fidelity Modeling of Energy Flow

- Energy influx, body and surface waves, 3D, inclined
- Mechanical dissipation outside of SSI domain:
 - Radiation of reflected waves
 - Radiation of oscillating SSI system
- Mechanical dissipation inside SSI domain:
 - Plasticity of soil/rock subdomain
 - Plasticity of foundation soil/rock interface
 - Viscous coupling of porous solid with pore fluid (air, water)
 - Plasticity/damage of the structure
 - Viscous coupling of structure/foundation with fluids
- Numerical energy dissipation/production

ESSI Simulator Program, Current Status

Motivation	ESSI Simulator System ●○	Modeling and Applications	Current Work	Summary 00
ESSI Simulator System				

Outline

Motivation

ESSI Simulator System ESSI Simulator System

Modeling and Applications

Pisanò Model, G/G_{max} and Damping Curves Contact Base Isolation

Current Work

Summary

Jeremić

Motivation	ESSI Simulator System ○●	Modeling and Applications	Current Work o	Summary 00
ESSI Simulator System				

ESSI Project

- Development of the ESSI Simulator System for Hi-Fi modeling and simulation of non-linear earthquake soil/rock structure interaction problems:
 - ESSI-Program is a 3D, nonlinear, time domain, high performance, parallel finite element program specifically developed for high fidelity modeling and simulation of Earthquake Soil/Rock Structure Interaction problems for NPPs
 - ESSI-Computer
 - ESSI-Notes
- A UCD/LBNL project with funding from and collaboration with the US-NRC, CNSC, US-NSF, US-DOE, LLNL, INL, AREVA NP GmbH, Shimizu Corp. etc.

 Motivation
 ESSI Simulator System
 Modeling and Applications
 Current Work
 Summary

 000
 00
 000000
 000000
 000000

 Pisanò Model, G/G_{max} and Damping Curves
 0000000
 0000000
 00000000000

Outline

Motivation

ESSI Simulator System ESSI Simulator System

Modeling and Applications Pisanò Model, G/G_{max} and Damping Curves Contact Base Isolation

Current Work

Summary

Jeremić

Motivation	ESSI Simulator System	Modeling and Applications	Current Work o	Summary 00
Pisanò Model (Community Curves			

Pisanò Elastic Plastic Material Model

- SD incremental elastic-plastic material model that can be calibrated from G/G_{max} and damping curve data
- Elasticity: linear or nonlinear
- Yield surface, Drucker-Prager cone, collapsed (limit analysis, vanishing elastic regions) to cylinder (von Mises), with conical bounding surface
- Plastic flow and rotational kinematic hardening, similar to Manzari-Dafalias model (1997)
- Yield (loading-unloading) condition established using stress projection

Motivation	ESSI Simulator System	Modeling and Applications ○○●○○○○ ○○○○	Current Work o	Summary 00
Pisanò Model (3/Gmay and Damping Curves			

Pisanò Model: Calibration for G/G_{max} and Damping

Figure: Comparison between experimental and simulated G/G_{max} and damping curves ($p_0=100$ kPa, T= 2π s, $\zeta = 0.003$, $G_{max} = 4$ MPa, $\nu=0.25$, M=1.2, $k_d=\xi=0$, $h=G_{max}/(15p_0)$, m=1)

UCD

Motivation	ESSI Simulator System	Modeling and Applications	Current Work	Summary 00
Pisanò Model, G/G	max and Damping Curves			

Soil Volume Response

- Soil behavior is very much a function of volumetric response
- Dilative soils: increase volume due to shearing
- Compressive soils: decrease volume due to shearing
- Modulus reduction and damping curves do not provide volumetric data
- Soil volume change will affect response due to volume constraints

Motivation	ESSI Simulator System	Modeling and Applications ○○○○●○○ ○○○○	Current Work ○	Summary 00
Pisanò Model. (G/Gmax and Damping Curves			

No Volume Change and Dilative Soil

Jeremić

Motivation	ESSI Simulator System	Modeling and Applications ○○○○●○ ○○○○	Current Work ○	Summary 00
Pisanà Model G	Curves			

Northridge, No Volume Change and Dilative Soils

Jeremić

Northridge, No Volume Change and Dilative Soils

Jeremić

Motivation	ESSI Simulator System	Modeling and Applications ○○○○○○○ ●○○○	Current Work o	Summary 00
Contact Base Isolati	on			

Outline

Motivation

ESSI Simulator System ESSI Simulator System

Modeling and Applications Pisanò Model, *G/G_{max}* and Damping Curves Contact Base Isolation

Current Work

Summary

Jeremić

vation	ESSI Simulator System

Modeling and Applications

Current Work

Summary

Contact Base Isolation

Mot

Nuclear Power Plant with Base Slip

- Low friction zone between concrete foundation and soil/rock
- Inclined, 3D, body and surface, seismic wave field (wavelets: Ricker, Ormsby; real seismic, etc.)

10

UCDAV

Time (s)

vertical

DB: time0.vtk Cycle: 0

Jeremić

Motivation	ESSI Simulator System	Modeling and Applications	Current Work o	Summary 00

Contact Base Isolation

Acc. Response for a Full 3D (at 45°) Ricker Wavelet

Time (s)

Slip Behavio No-slip Behavio

40

20

-20

-40

Acceleration (m/s2)

UCDAVIS

Jeremić

Motivation	ESSI Simulator System	Modeling and Applications ○○○○○○ ○○○●	Current Work	Summary 00
Contact Base Is	olation			

Slipping Response and Energy Dissipated (45° Ricker)

Motivation 000	ESSI Simulator System	Modeling and Applications	Current Work ●	Summary 00
Current Work				

Current NPP Model(s)

- Inclined seismic waves
- Foundation slip/no-slip
- Dynamics of impact
- Isolators, dissipators
- Piles and pile groups
- Uncorrelated (incoherent) motions
- Saturated dense vs loose soil with buoyant forces

Surface wave

Motivation 000	ESSI Simulator System	Modeling and Applications	Current Work o	Summary ●○
Summary				

Summary

- Nonlinear Earthquake Soil/Rock Structure Interaction (ESSI) plays a decisive role in seismic performance of NPPs
- Nonlinear ESSI modeling and simulations has to be performed using high fidelity modeling and simulation tools
- High fidelity ESSI modeling and simulation tools require extensive verification and validation
- Risk informed decision making can/should only be done using such high fidelity modeling and simulation
- ESSI Simulator Program (system), is one such tool that is used for modeling, simulations, design and regulatory decision making
- Education and training of users (regulators, designers, owners/applicants) proves essential

Motivation	ESSI Simulator System	Modeling and Applications	Current Work o	Summary ⊙●
Summary				

Acknowledgement

- Funding from and collaboration with the US-NRC, CNSC, US-NSF, US-DOE, LLNL, INL, and collaboration with AREVA NP GmbH, Shimizu Corp., etc. is greatly appreciated,
- Collaborators, students: Mr. Abell, Mr. Jeong, Mr. Aldridge. Mr. Kamranimoghadam, Dr. Tafazzoli, Dr. Pisanò, Dr. Martinelli, Dr. Preisig, Dr. Chang, Prof. Sett (U. Bufallo), Prof. Taiebat (U. British Columbia), Prof. Yang (U. Alaska)

