Earthquake Soil Structure Interaction (ESSI) Modeling and Simulation

Boris Jeremić

Consulting Engineer, Jeremic Engineering Consultants
Professor, University of California, Davis
Faculty Scientist, Lawrence Berkeley National Laboratory, Berkeley

INL Steering Committee Meeting
December 2013
Outline

Intro
 Motivation
 Flow of Seismic Energy
 Modeling Uncertainty

ESSI System
 ESSI Program

ESSI Examples
 3D, Inclined, Body and Surface
 Model Verification, Mesh Size Effects
 Seismic Wave Propagation Through Uncertain Soils

Summary
Outline

Intro

Motivation
Flow of Seismic Energy
Modeling Uncertainty

ESSI System
ESSI Program

ESSI Examples
3D, Inclined, Body and Surface
Model Verification, Mesh Size Effects
Seismic Wave Propagation Through Uncertain Soils

Summary
Motivation

- Improving seismic design for Nuclear Power Plants (NPPs)

- Use of high fidelity numerical models for analyzing seismic behavior of NPP soil structure interaction (SSI) system

- Accurately follow, and direct (!), in space and time, flow of seismic energy through the NPP SSI system
Hypothesis

- Interplay of an Earthquake with Soil/Rock and Structure, in time domain, plays a major role in seismic response successes and failures.

- Timing and spatial location of energy dissipation determines location and amount of damage.

- If timing and spatial location of energy dissipation can be controlled (directed, designed), NPP soil structure systems can be optimized for
 - Safety and
 - Economy
Predictive Capabilities

- **Verification** provides evidence that the model is solved correctly. Mathematics issue.

- **Validation** provides evidence that the correct model is solved. Physics issue.

- **Prediction**: use of computational model to foretell the state of a physical system under consideration under conditions for which the computational model has not been validated.

- Goal: physics based predictive capabilities with **low Kolmogorov Complexity**

- High Fidelity, **hierarchical**, predictive capabilities, aim for higher modeling sophistication then needed
Outline

Intro
Motivation
Flow of Seismic Energy
Modeling Uncertainty

ESSI System
ESSI Program

ESSI Examples
3D, Inclined, Body and Surface
Model Verification, Mesh Size Effects
Seismic Wave Propagation Through Uncertain Soils

Summary
Seismic Energy Input and Dissipation

- Seismic energy influx through closed boundary
- Mechanical dissipation outside of NPP SSI domain:
 - reflected wave radiation
 - NPP SSI system oscillation radiation
- Mechanical dissipation inside NPP SSI domain:
 - plasticity of soil subdomains
 - viscous coupling of porous solid with pore fluid (air, water)
 - plasticity/damage of the parts of structure/foundation
 - viscous coupling of structure/foundation with fluids
 - potential ↔ kinetic energy
- Numerical energy dissipation/production
Energy Dissipation by Soil Plasticity

Energy dissipation (plastic work) capacity for different soils

![Graph showing energy dissipation for different soils](image-url)
Outline

Intro
Motivation
Flow of Seismic Energy
Modeling Uncertainty

ESSI System
ESSI Program

ESSI Examples
3D, Inclined, Body and Surface
Model Verification, Mesh Size Effects
Seismic Wave Propagation Through Uncertain Soils

Summary
Modeling Uncertainty

- Simplified (or inadequate/wrong) modeling: important features are missed (seismic ground motions, etc.)

- Introduction of uncertainty and (unknown) lack of accuracy in results due to use of un-verified simulation tools (software quality, etc.)

- Introduction of uncertainty and (unknown) lack of accuracy in results due to use of un-validated models (due to lack of quality validation experiments)
Complexity of and Uncertainty in Ground Motions

- 6D (3 translations, 3 rotations)
- Vertical motions usually neglected
- Rotational components usually not measured and neglected
- Lack of models for such 6D motions (from measured data))
- Sources of uncertainties in ground motions (Source, Path (rock), soil (rock))
Complexity of and Uncertainty in Material Modeling

- All engineering materials experience inelastic deformations for working loads
- This is even more so for hazard loads (earthquakes)
- Pressure sensitive materials (soil, rock, concrete, etc.) can have very complex constitutive response, tying together nonlinear stress-strain with volume response
- Simplistic material modeling (elastic, G/G_{max}, etc.) introduce (significant) uncertainties in response results
- In addition, man-made and natural materials are spatially variable and their material modeling parameters are uncertain
Material Behavior Inherently Uncertain

- Spatial variability
- Point-wise uncertainty, testing error, transformation error

(Mayne et al. (2000))
Transformation of SPT N-value \rightarrow un-drained shear strength, s_u (cf. Phoon and Kulhawy (1999B))

Histogram of the residual (w.r.t the deterministic transformation equation) un-drained strength, along with fitted probability density function (Pearson IV)
SPT Based Determination of Young’s Modulus

Transformation of SPT N-value → 1-D Young’s modulus, E (cf. Phoon and Kulhawy (1999B))

Histogram of the residual (w.r.t the deterministic transformation equation) Young’s modulus, along with fitted probability density function

Jeremić

ESSI Modeling and Simulation
Outline

Intro
Motivation
Flow of Seismic Energy
Modeling Uncertainty

ESSI System

ESSI Program

ESSI Examples
3D, Inclined, Body and Surface
Model Verification, Mesh Size Effects
Seismic Wave Propagation Through Uncertain Soils

Summary
ESSI Simulator System

- **ESSI-Program** is a 3D, nonlinear, time domain, parallel finite element program specifically developed for Hi-Fi modeling and simulation of Earthquake Soil/Rock Structure Interaction of NPPs on ESSI-Computer.

- **ESSI-Computer** is a distributed memory parallel computer, a cluster of clusters with multiple performance processors and multiple performance networks.

- **ESSI-Notes** are a hypertext documentation system (Theory and Formulation, Software and Hardware, Verification and Validation, and Case Studies and Practical Examples) detailing modeling and simulation of ESSI problems.
ESSI Program: Finite Elements

- Dry/single phase solids (8, 20, 27 8-27 node bricks)
- Saturated/two phase solids (8 and 27 node bricks, liquefaction modeling, buoyant forces)
- Quad (ANDES) Shell (6DOFs per node)
- Beams (6DOFs and variable DOFs per node)
- Truss
- Contacts (dry or saturated soil/rock - concrete, gap opening-closing, frictional slip)
- Base isolators (elastomeric, frictional pendulum)
ESSI Program: Material Models

- Linear and nonlinear, isotropic and anisotropic elastic
- Elastic-Plastic (von Mises, Drucker Prager, Rounded Mohr-Coulomb, Parabolic Leon, Cam-Clay, SaniSand (Dafalias-Manzari), SaniClay, Pisanò...)
- All elastic-plastic models can be used as perfectly plastic, isotropic hardening/softening and kinematic hardening models
ESSI Program: Seismic Input

- Analytic input of seismic motions
 - Body waves (P, SH, SV)
 - Surface waves (Rayleigh, Love, etc.)
 - Analytic radiation damping

- Domain Reduction Method (Bielak et al.)

- Synthetic and realistic seismic motions (Hisada, fk, FEM, etc.)
ESSI Program: Verification and Validation

- Detailed Verification (math issue)
 - Finite elements
 - Material model
 - Solution algorithms
 - Analysis procedure
 - Code documented in detail in ESSI Notes.

- (Not so) Detailed Validation (physics issue) (lack of high quality experimental data)

- Detailed V&V documentation in ESSI Notes
ESSI Program: High Performance Computing, Parallel

- Sequential computing: available for all models, however
- High Performance Parallel Computing: for high fidelity modeling, parallel is really the only option. Parallel ESSI Program available on
 - Single, multi-core/multi-CPU PCs,
 - Clusters of (multi-core/multi-CPU) PCs,
 - Distributed memory parallel (DMP) supercomputers (all top national supercomputers).
- Template metaprograms for local, element and material model level high performance computing
ESSI Program: Probabilistic/Stochastic

- Constitutive: Fokker-Planck-Kolmogorov equation for probabilistic elasto-plasticity (PEP)
- Spatial: stochastic elastic plastic finite element method (SEPFEM)
- Uncertain: material (LHS) and loads (RHS):
 \[M_{AacB} \ddot{u}_{Bc} + C_{AacB} \dot{u}_{Bc} + K_{AacB}^{EP} \bar{u}_{Bc} = F_{Aa} \]
- Results \((u_i, \sigma_{ij}, \epsilon_{ij})\) are very accurate (second order accurate for stress) Probability Density Functions (PDFs)
- PEP and SEPFEM are not based on a Monte Carlo method,
- Uncertain input variables and uncertain DOFs are expanded into spectral probabilistic spaces, single run solution
Probabilistic Elastic-Plastic Response
Probabilistic Elastic-Plastic Response

![Graph showing stress-strain relationship with probabilistic elements like mean, mode, and standard deviations.](image-url)
Outline

Intro
- Motivation
- Flow of Seismic Energy
- Modeling Uncertainty

ESSI System
- ESSI Program

ESSI Examples
- 3D, Inclined, Body and Surface
- Model Verification, Mesh Size Effects
- Seismic Wave Propagation Through Uncertain Soils

Summary
Earthquake Ground Motions

Realistic earthquake ground motions

- Body waves: P and S waves
- Inclined waves
- 3D (6D!) waves
- Surface waves: Rayleigh, Love waves, etc.
- Surface waves carry most seismic energy of interest
- Lack of correlation (incoherence)
3D Synthetic Seismic Motions

- Development of analytic and numerical 3D, inclined, uncorrelated seismic motions for verification, stress testing of NPPs, etc.
- Large scale model
- Point shear source
- Stress drop:
 - Wavelet (Ricker, Ormsby, etc)
 - Analytic
- Seismic input using DRM (Bielak et al (2003))
Plane Wave Model
Seismic Source Mechanics

Stress drop, Ormsby wavelet controlled frequency range
Middle (NPP Location) Plane, Top 2km

horizontal accelerations

vertical accelerations

Jeremič

ESSI Modeling and Simulation
Verification: Displacements, Top Middle Point

\[(X)\]

\[(Z)\]
Verification: Disp. and Acc., Out of DRM
Outline

Intro
 Motivation
 Flow of Seismic Energy
 Modeling Uncertainty

ESSI System
 ESSI Program

ESSI Examples
 3D, Inclined, Body and Surface
 Model Verification, Mesh Size Effects
 Seismic Wave Propagation Through Uncertain Soils

Summary
Motion Filtering: Mesh Size Effects

- Finite element mesh "filters out" high frequencies
- Usual rule of thumb: 10-12 elements needed per wave length
- 1D wave propagation model
- 3D finite elements (same in 3D)
- Motions applied as displacements at the bottom
- Linear elastic and elastic – linear hardening plastic material

<table>
<thead>
<tr>
<th>case</th>
<th>model height [m]</th>
<th>V_s [m/s]</th>
<th>El.size [m]</th>
<th>f_{max} (10el) [Hz]</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>1000</td>
<td>1000</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>4</td>
<td>1000</td>
<td>1000</td>
<td>20</td>
<td>5</td>
</tr>
<tr>
<td>6</td>
<td>1000</td>
<td>1000</td>
<td>50</td>
<td>2</td>
</tr>
</tbody>
</table>
Ormsby Wavelet Input Motions
Linear Elastic Material: Surface Motions

![Graph showing displacement vs. time for different element sizes.](image-url)
Linear Elastic Material, FFT of Input and Surface Motions

![Diagram showing FFT amplitude vs. frequency for different element sizes.](image-url)
Elastic Plastic Material, Stress-Strain Response
Elastic Plastic Material, Surface Response

Jeremić

ESSI Modeling and Simulation
Outline

Intro
 Motivation
 Flow of Seismic Energy
 Modeling Uncertainty

ESSI System
 ESSI Program

ESSI Examples
 3D, Inclined, Body and Surface
 Model Verification, Mesh Size Effects
 Seismic Wave Propagation Through Uncertain Soils

Summary
"Uniform" CPT Site Data
Seismic Wave Propagation Through Uncertain Soils

Random Field Parameters from Site Data

- Soil as 12.5 m deep 1-D soil column (von Mises Material)
 - Properties (including testing uncertainty) obtained through random field modeling of CPT q_T
 \[\langle q_T \rangle = 4.99 \, MPa; \quad Var[q_T] = 25.67 \, MPa^2; \]
 Cor. Length $[q_T] = 0.61 \, m$; Testing Error = $2.78 \, MPa^2$

- q_T was transformed to obtain G: \[G/(1 - \nu) = 2.9q_T \]
 - Assumed transformation uncertainty = 5%
 \[\langle G \rangle = 11.57MPa; \quad Var[G] = 142.32MPa^2 \]
 Cor. Length $[G] = 0.61m$

- Input motions: modified 1938 Imperial Valley
Decision About Site (Material) Characterization

- Do nothing about site characterization (rely on experience): conservative **guess** of soil data, $COV = 225\%$, correlation length $= 12\text{m}$.

- Do better than standard site characterization: $COV = 103\%$, correlation length $= 0.61\text{m}$

- Improve site (material) characterization if probabilities of exceedance are unacceptable!
Full PDFs of all DOFs (and σ_{ij}, ϵ_{ij}, etc.)

- Stochastic Elastic-Plastic Finite Element Method (SEPFEM)

- Dynamic case

- Full PDF at each time step Δt
PDF at each Δt (say at 6 s)

![PDF graph with Real Soil Data and Conservative Guess curves](image-url)
PDF → CDF (Fragility) at 6 s

CDF

Displacement (mm)

Real Soil Data
Conservative Guess
Current NPP Model(s)

- General 3D seismic waves
- Foundation slip – gap
- Isolators, dissipators
- Uncorrelated (incoherent) motions
- Saturated dense vs loose soil with buoyant forces
- Piles and pile groups
- Uncertain material (LHS) and seismic motions (RHS)
Summary

▶ Interplay of uncertain earthquake, uncertain soil, and uncertain structure, in time domain, probably plays a decisive role in seismic performance of NPPs

▶ Improve risk informed decision making (design ⇒ safety and economy) through high fidelity, modeling and simulation (ESSI Simulator System)

▶ Education and training of users (designers, regulators, owners) will prove essential
Acknowledgement

- Funding from and collaboration with the US-NRC, US-NSF, US-DOE, CNSC, LLNL, INL, AREVA NP GmbH, Shimizu Corp., and EDF is greatly appreciated,

- Collaborators, students: Mr. Abell, Mr. Jeong, Mr. Aldridge, Mr. Kamranimoghadam, Mr. Karapiperis, Mr. Watanabe, Mr. Chao, Dr. Tafazzoli, Dr. Pisanò, Dr. Martinelli, Dr. Preisig, Dr. Chang, Prof. Sett (U. Bufallo), Prof. Taiebat (U. British Columbia), Prof. Yang (U. Alaska)