Civil and Structural Engineering Gaps in Small Modular Reactor Designs

Boris Jeremić (UCD/LBNL) with Justin Coleman (INL) and Andrew Whittaker (UB)

ASME 2014 SMR Symposium

Coleman, Whittaker and Jeremić

Outline

Introduction Opportunities and Challenges

Gaps in SMR Design Modeling and Simulation Issues

Summary

Coleman, Whittaker and Jeremić

Outline

Introduction Opportunities and Challenges

Gaps in SMR Design Modeling and Simulation Issues

Summary

Coleman, Whittaker and Jeremić

SMR: Civil Structural Economic Opportunities

- SMRs present the opportunity to make investments in nuclear power more affordable
- To capitalize on this economic potential SMR vendors need to:
 - provide a design that is economically more affordable (per kilowatt hour) by:
 - Maximizing the modularity
 - Minimizing regulatory risk by using standardizing approaches for modular construction, seismic isolation, and seismic analysis

Summary o

SMR: Regulatory Challenges Related to Standardization

- Ideally vendors would have standardized methods to use in the licensing process:
 - Modular construction
 - Seismic isolation of Structure, Systems, and Components (SSCs)
 - Seismic analysis methods
- Standardized methods would minimize NRC questions during the licensing process

Coleman, Whittaker and Jeremić

SMR: Need for Appropriate Tools and Methods

- ► Seismic Analysis and Design to meet Performance Goals
 - ► Analysis must be accurate, reducing modeling uncertainty
 - Design must be consistent with codes and standards
 - Produce designs that are conservative with respect to the Earthquake Hazard
- Seismic Probabilistic Risk Assessment
 - Want accurate (or best estimate) core damage frequency numbers

Coleman, Whittaker and Jeremić

Introduction 00000 Opportunities and Challenges

SMR: Seismic Challenges (from US-NRC) US-NRC DESIGN-SPECIFIC REVIEW STANDARD FOR mPOWER iPWR DESIGN; (deeply embedded structures)

- Effect of deep embedment on the relative significance of kinematic interaction
- The extent to which non-vertically propagating shear waves may be more important for deeply embedded structures than for those with shallow embedment depth
- The impact of deep embedment on the accuracy of side wall impedance functions calculated with standard methods
- The effect of nonlinear behavior (e.g., separation of structure and soil, and soil material properties) on wall pressure and SSI calculations;
- The variation of V/H (vertical to horizontal) spectral ratios on ground motion over the depth of the facility.

Coleman, Whittaker and Jeremić

SMR: Challenges for Design

- Seismic performance goals for SMRs
- Earthquake Soil Structure Interaction analysis of deeply embedded structures
- Modeling of fluid-structure interaction
- Seismic isolation of SMR components and systems
- Modular SC construction of SMR components and systems
- Uncertainty in material behavior, earthquake loads, &c. (advanced seismic probabilistic risk assessment for SMRs)
- Modeling uncertainty
- Protection of SMRs from man made hazard (aircraft impact, &c.)
- Regulatory guidance for the civil/structural design of SMRs

Outline

ntroduction Opportunities and Challenges

Gaps in SMR Design Modeling and Simulation Issues

Summary

Coleman, Whittaker and Jeremić

Gaps in SMR Design

Summary o

Modeling and Simulation Issues

High Fidelity Modeling and Simulation Some soil-structure features of SMR are similar with LWRs

Coleman, Whittaker and Jeremić

Gaps in SMR Design

Summary o

Modeling and Simulation Issues

Earthquake Soil Structure Interaction (ESSI)

- A number of ESSI modeling and simulation issues that control the seismic response
- Detrimental and Beneficial ESSI effects
- Seismic energy propagation and dissipation

Coleman, Whittaker and Jeremić

Gaps in SMR Design

Summary 0

Modeling and Simulation Issues

ESSI: Seismic Body and Surface Waves

- Seismic surface waves carry most seismic energy
- SMR bottom: body waves; SMR top: surface waves
- Incoherent seismic motions

Coleman, Whittaker and Jeremić

Gaps in SMR Design

Summary o

Modeling and Simulation Issues

ESSI: Nonlinear Contact and Soil/Rock Zones

- Seismic energy dissipated at the contact
- Seismic energy dissipated within adjacent soil/rock zones
- Passive (complete) structural isolation (beneficial)

Coleman, Whittaker and Jeremić

Gaps in SMR Design

Summary o

Modeling and Simulation Issues

ESSI: Fluid Structure Interaction

- SMR below water table,
- Saturated soil (liquefaction, densification/stiffening)
- Buoyant forces (dynamically changing)

Coleman, Whittaker and Jeremić

Gaps in SMR Design

Summary o

Modeling and Simulation Issues

ESSI: Uncertain Material and Uncertain Loads

- Inherently uncertain material response
- Inherently uncertain (seismic) loading
- Full probabilistic modeling and simulations is desired

Coleman, Whittaker and Jeremić

Modeling and Simulation Issues

Modeling Uncertainty

- ► Goal: reduction of modeling uncertainty
- Modeling Uncertainty: introduced with unnecessary modeling simplification
- Modeling Uncertainty: introduced with unrealistic modeling simplification
- Use of results obtained using models with (high) modeling uncertainty for design is questionable

Coleman, Whittaker and Jeremić

Modeling and Simulation Issues

Verification and Validation

- Verification provides evidence that the model is solved correctly. Mathematics issue.
- Validation provides evidence that the correct model is solved. Physics issue.
- Prediction: use of computational model to foretell the state of a physical system under consideration under conditions for which the computational model has not been validated.
- Goal: physics based predictive capabilities with low modeling uncertainty
- High fidelity, hierarchical, predictive capabilities, aim for higher modeling sophistication then needed

Coleman, Whittaker and Jeremić

Seismic Isolation

- Goal: reduction of seismic demand
- ► Active: using engineered devices for SSCs
- Passive: relying on surrounding soil and contact zone

Coleman, Whittaker and Jeremić

Modeling and Simulation Issues

Modular, Standardized Design and Construction

For an efficient (safety and economy) SMR:

- High fidelity modeling and simulation of standardized modules and a complete SMR
- Design of standardized modules
- Construction of standardized modules that assemble into a complete, efficient SMR

Outline

ntroduction Opportunities and Challenges

Gaps in SMR Design Modeling and Simulation Issues

Summary

Coleman, Whittaker and Jeremić

Introduction	
00000	
Summary	

Closing Thoughts

- SMRs present significant opportunities to make investment in nuclear power more affordable
- Design challenges can be successfully overcome by relying on high fidelity modeling and simulation
- Use of full nonlinear, time domain, deterministic and probabilistic modeling and simulation methods/tools (for example: NRC ESSI Simulator) can help emphasize many benefits SMR soil-structure system feature!
- Standardized, modular approach to modeling, design and construction of SMRs for enhanced safety and economy

Coleman, Whittaker and Jeremić