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Motivation

Improve modeling and simulation for infrastructure objects

Reduction of modeling uncertainty

Choice of analysis level of sophistication

Account for parametric uncertainty

Goal: Predict and Inform rather than (force) fit

Engineer needs to know!

Jeremić et al.
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Numerical Prediction under Uncertainty

◮ Modeling Uncertainty, Simplifying assumptions

Low, medium, high sophistication modeling and simulation

Choice of sophistication level for confidence in results

◮ Parametric Uncertainty, Müi + Cu̇i + K epui = F (t),

Uncertain mass M, viscous damping C and stiffness K ep

Uncertain loads, F (t)

Results are PDFs and CDFs for σij , ǫij , ui , u̇i , üi

Jeremić et al.
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Modeling Uncertainty

- Important (?!) features are simplified, 1C vs 3C, inelasticity

- Modeling simplifications are justifiable if one or two level

higher sophistication model demonstrates that features

being simplified out are less or not important

Jeremić et al.
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Parametric Uncertainty: Material and Motions
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Real-ESSI Simulator System

The Real-ESSI, Realistic Modeling and Simulation of

Earthquakes, Soils, Structures and their Interaction. Simulator

is a software, hardware and documentation system for time

domain, linear and nonlinear, inelastic, deterministic or

probabilistic, 3D, modeling and simulation of:

- statics and dynamics of soil,

- statics and dynamics of structures,

- statics of soil-structure systems, and

- dynamics of earthquake-soil-structure system interaction

Used for:

- Design: linear elastic, load combinations, dimensioning

- Assessment: nonlinear/inelastic, risk, safety margins

Jeremić et al.
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Uncertainty Propagation through Inelastic System

◮ Incremental el–pl constitutive equation

∆σij = EEP
ijkl ∆ǫkl =

[

Eel
ijkl −

Eel
ijmnmmnnpqEel

pqkl

nrsEel
rstumtu − ξ∗h∗

]

∆ǫkl

◮ Dynamic Finite Elements

Müi + Cu̇i + K epui = F (t)

◮ Material and loads are uncertain

Jeremić et al.
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Previous Work

◮ Linear algebraic or differential equations:

◮ Variable Transf. Method (Montgomery and Runger 2003)
◮ Cumulant Expansion Method (Gardiner 2004)

◮ Nonlinear differential equations:

◮ Monte Carlo Simulation (Schueller 1997, De Lima et al

2001, Mellah et al. 2000, Griffiths et al. 2005...)

→ can be accurate, very costly
◮ Perturbation Method (Anders and Hori 2000, Kleiber and

Hien 1992, Matthies et al. 1997)

→ first and second order Taylor series expansion about

mean - limited to problems with small C.O.V. and inherits

"closure problem"
◮ SFEM (Ghanem and Spanos 1989, Matthies et al, 2004,

2005, 2014...)

Jeremić et al.
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3D Fokker-Planck-Kolmogorov Equation

∂P(σij(xt , t), t)

∂t
=

∂

∂σmn

[{〈

ηmn(σmn(xt , t),Emnrs(xt), ǫrs(xt , t))

〉

+

∫ t

0

dτCov0

[

∂ηmn(σmn(xt , t),Emnrs(xt), ǫrs(xt , t))

∂σab

;

ηab(σab(xt−τ , t − τ),Eabcd (xt−τ ), ǫcd (xt−τ , t − τ)

]}

P(σij(xt , t), t)

]

+
∂2

∂σmn∂σab

[{
∫ t

0

dτCov0

[

ηmn(σmn(xt , t),Emnrs(xt), ǫrs(xt , t));

ηab(σab(xt−τ , t − τ),Eabcd (xt−τ ), ǫcd (xt−τ , t − τ))

]}

P(σij(xt , t), t)

]

(Jeremić et al. 2007)

Jeremić et al.
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FPK Equation

◮ Advection-diffusion equation

∂P(σ, t)

∂t
= −

∂

∂σ

[

N(1)P(σ, t)−
∂

∂σ

{

N(2)P(σ, t)
}

]

◮ Complete probabilistic description of response

◮ Solution PDF is second-order exact to covariance of time

(exact mean and variance)

◮ It is deterministic equation in probability density space

◮ It is linear PDE in probability density space → simplifies

the numerical solution process

Jeremić et al.

Uncertain ESSI



Introduction Uncertain Inelastic Computational Mechanics Applications Summary

Template Solution of FPK Equation

◮ FPK diffusion–advection equation is applicable to any

material model → only the coefficients N(1) and N(2) are

different for different material models

◮ Initial condition

◮ Deterministic → Dirac delta function → P(σ, 0) = δ(σ)
◮ Random → Any given distribution

◮ Boundary condition: Reflecting BC → conserves

probability mass ζ(σ, t)|At Boundaries = 0

◮ Solve using finite differences and/or finite elements

◮ However (!!) it is a stress solution and probabilistic

stiffness is an approximation!

Jeremić et al.
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Probabilistic Elastic-Plastic Response

Jeremić et al.
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Cam Clay with Random G, M and p0
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Time Domain Stochastic Galerkin Method

Dynamic Finite Elements Müi + Cu̇i + K epui = F (t)

◮ Input random field/process(non-Gaussian, heterogeneous/
non-stationary)

Multi-dimensional Hermite Polynomial Chaos (PC) with

known coefficients

◮ Output response process

Multi-dimensional Hermite PC with unknown coefficients

◮ Galerkin projection: minimize the error to compute

unknown coefficients of response process

◮ Time integration using Newmark’s method

Update coefficients following an elastic-plastic constitutive

law at each time step

Jeremić et al.
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Polynomial Chaos Representation

Material random field:

D(x , θ) =
∑P1

i=1 ai(x)Ψi({ξr (θ)})

Seismic motions random process:

fm(t , θ) =
∑P2

j=1 fmj(t)Ψj({ξk (θ)})

Displacement response:

un(t , θ) =
∑P3

k=1 dnk (t)Ψk ({ξl(θ)})

where ai(x), fmj(t) are known PC coefficients, while dnk (t) are

unknown PC coefficients.

Jeremić et al.
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Direct Probabilistic Constitutive Solution in 1D

◮ Zero elastic region elasto-plasticity with stochastic

Armstrong-Frederick kinematic hardening

∆σ = Ha∆ǫ− crσ|∆ǫ|; Et = dσ/dǫ = Ha ± crσ

◮ Uncertain: init. stiff. Ha, shear strength Ha/cr , strain ∆ǫ:
Ha = ΣhiΦi ; Cr = ΣciΦi ; ∆ǫ = Σ∆ǫiΦi

◮ Resulting stress and stiffness are also uncertain

Jeremić et al.
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Direct Probabilistic Stiffness Solution

◮ Analytic product for all the components,

EEP
ijkl =

[

Eel
ijkl −

Eel
ijmnmmnnpqEel

pqkl

nrsEel
rstumtu − ξ∗h∗

]

◮ Stiffness: each Polynomial Chaos component is updated

incrementally

En+1
t1

= 1
<Φ1Φ1>

{
∑Ph

i=1 hi < ΦiΦ1 > ±
∑Pc

j=1

∑Pσ

l=1 cjσ
n+1
l <

ΦjΦlΦ1 >}
...
En+1

tP
= 1

<Φ1ΦP>
{
∑Ph

i=1 hi < ΦiΦP > ±
∑Pc

j=1

∑Pσ

l=1 cjσ
n+1
l <

ΦjΦlΦP >}

◮ Total stiffness is :

En+1
t =

∑PE

l=1 En+1
ti

Φi

Jeremić et al.
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Direct Probabilistic Stress Solution

◮ Analytic product, for each stress component,

∆σij = EEP
ijkl ∆ǫkl

◮ Incremental stress: each Polynomial Chaos component is

updated incrementally

∆σn+1
1 = 1

<Φ1Φ1>
{
∑Ph

i=1

∑Pe

k=1 hi∆ǫn
k < ΦiΦkΦ1 >

−
∑Pg

j=1

∑Pe

k=1

∑Pσ

l=1 cj∆ǫn
kσ

n
l < ΦjΦkΦlΦ1 >}

...

∆σn+1
P = 1

<ΦPΦP>
{
∑Ph

i=1

∑Pe

k=1 hi∆ǫn
k < ΦiΦkΦP >

−
∑Pg

j=1

∑Pe

k=1

∑Pσ

l=1 cj∆ǫn
kσ

n
l < ΦjΦkΦlΦP >}

◮ Stress update:
∑Pσ

l=1 σ
n+1
i Φi =

∑Pσ

l=1 σ
n
i Φi +

∑Pσ

l=1 ∆σn+1
i Φi

Jeremić et al.
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Probabilistic Elastic-Plastic Response

(MP4)

Jeremić et al.
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Stochastic Elastic-Plastic Finite Element Method

◮ Material uncertainty expanded into stochastic shape funcs.

◮ Loading uncertainty expanded into stochastic shape funcs.

◮ Displacement expanded into stochastic shape funcs.

◮ Jeremić et al. 2011
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SEPFEM: System Size

◮ SEPFEM offers a complete solution (single step)

◮ It is NOT based on Monte Carlo approach

◮ System of equations does grow (!)

# KL terms material # KL terms load PC order displacement Total # terms per DoF

4 4 10 43758

4 4 20 3 108 105

4 4 30 48 903 492

6 6 10 646 646

6 6 20 225 792 840

6 6 30 1.1058 1010

8 8 10 5 311 735

8 8 20 7.3079 109

8 8 30 9.9149 1011

... ... ... ...

Jeremić et al.
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SEPFEM: Example in 1D

(MP4)

Jeremić et al.
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SEPFEM: Example in 3D

(MP4)

Jeremić et al.
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Current State of Art Seismic Risk Analysis (SRA)

- Intensity measure (IM) selected as a proxy for ground

motions, usually Spectral acceleration Sa(T0)

- Ground Motion Prediction Equations (GMPEs) need

development, ergodic or site specific

- Probabilistic seismic hazard analysis (PSHA)

- Fragility analysis P(EDP > x |IM = z), deterministic time

domain FEM, Monte Carlo (MC)

Jeremić et al.
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Seismic Risk Analysis Challenges

- Miscommunication between seismologists and structural

engineers, Sa(T0) not compatible with nonlinear FEM

- IMs difficult to choose, Spectral Acc, PGA, PGV...

- Single IM does not contain all/most uncertainty

- Monte Carlo, not accurate enough for tails

- Monte Carlo, computationally expensive, CyberShake for

LA, 20,000 cases, 100y runtime, (Maechling et al. 2007)

Jeremić et al.

Uncertain ESSI
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Time Domain Intrusive SRA Framework

- Stochastic Elastic-Plastic Finite Element Method,

SEPFEM, Müi + Cu̇i + K epui = F (t),

- Uncertain seismic loads, from uncertain seismic motions,

using Domain Reduction Method

- Uncertain elastic-plastic material, stress and stiffness

solution using Forward Kolmogorov, Fokker-Planck

equation

- Results, probability distribution functions for σij , ǫij , ui ...

Jeremić et al.
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Stochastic Seismic Motion Development

◮ UCERF3 (Field et al. 2014)

◮ Stochastic motions (Boore 2003)

◮ Polynomial Chaos Karhunen-Loève expansion

◮ Domain Reduction Method for Peff (Bielak et al. 2003)

Date of download:  9/30/2018 Copyright 2014

From: Uniform California Earthquake Rupture Forecast, Version 3 (UCERF3)—The Time‐Independent Model

Bulletin of the Seismological Society of America. 2014;104(3):1122-1180. doi:10.1785/0120130164

3D perspective view of California, showing the 2606 fault sections (black rectangles) of UCERF Fault Model 3.1 (FM 3.1). Colors 
indicate the long‐term rate at which each area participates in M≥6.7 earthquakes, averaged over all 720 UCERF3 logic‐tree 
branches for FM 3.1 and including aftershocks. The entire colored area represents the UCERF model region, which comprises 
California and a buffer zone. The white boxes define the San Francisco Bay area and Los Angeles regions used in various 
calculations, and the white line crossing the state is our definition of northern versus southern California. The Cascadia megathrust 
is not shown on this map; it and the Mendocino transform fault (which is shown) extend beyond the UCERF model region.

Figure Legend:

(modified	
  from	
  Boore,	
  1983)	
  

Jeremić et al.
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Stochastic Ground Motion Modeling

- Modeling fundamental characteristics of uncertain ground

motions, Stochastic Fourier amplitude spectra (FAS). and

Stochastic Fourier phase spectra (FPS) and not specific IM

- Mean behavior of stochastic FAS, w2 source radiation

spectrum by Brune(1970), and Boore(1983, 2003, 2015).

- Variability models for stochastic FAS, FAS GMPEs by Bora

et al. (2015, 2018), Bayless & Abrahamson (2019),

Stafford(2017) and Bayless & Abrahamson (2018).

- Stochastic FPS by phase derivative (Boore,2005), Logistic

phase derivative model by Baglio & Abrahamson (2017)

Jeremić et al.
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Uncertain Model Description

Jeremić et al.

Uncertain ESSI

◮ Fault 1: San Gregorio fault

◮ Fault 2: Calaveras fault

◮ Uncertainty: Segmentation,
slip rate, rupture geometry, etc.

◮ Vs30 = 620m/s

◮ m = 100kips/g

◮ k = 168kip/in

Covk =


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Seismic Source Characterization

Jeremić et al.

Uncertain ESSI
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Stochastic Ground Representation

Jeremić et al.

Uncertain ESSI
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Probabilistic Dynamic Response

Jeremić et al.

Uncertain ESSI
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Probabilistic Dynamic Response

Jeremić et al.

Uncertain ESSI

Probabilistic density of displacements evolution of top floor
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Maximum Inter-Story Drift Ratio (MIDR)
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Seismic Risk Analysis

Jeremić et al.

Uncertain ESSI
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Sensitivity Study

Jeremić et al.

Uncertain ESSI
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Sensitivity Study

Jeremić et al.

Uncertain ESSI

Fundamental frequency f increases from 1.6Hz to 8Hz:
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Seismic Risk, Uncertain Material
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Jeremić et al.

Uncertain ESSI



Introduction Uncertain Inelastic Computational Mechanics Applications Summary

Appropriate Science Quotes

◮ François-Marie Arouet, Voltaire: "Le doute n’est pas une

condition agréable, mais la certitude est absurde."

◮ Niklaus Wirth: "Software is getting slower more rapidly

than hardware becomes faster."

Jeremić et al.

Uncertain ESSI
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Summary

- Numerical modeling to predict and inform, rather than fit

- Sophisticated inelastic/nonlinear determinstic/probabilistic

modeling and simulations needs to be done carefully and

in phases

- Education and Training is the key!

- Collaborators: Feng, Yang, Behbehani, Sinha, Wang,

Karapiperis, Wang, Lacoure, Pisanó, Abell, Tafazzoli, Jie,

Preisig, Tasiopoulou, Watanabe, Cheng, Yang.

- Funding from and collaboration with the ATC/US-FEMA,

US-DOE, US-NRC, US-NSF, CNSC-CCSN, UN-IAEA, and

Shimizu Corp. is greatly appreciated,

- http://sokocalo.engr.ucdavis.edu/~jeremic

Jeremić et al.
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