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Motivation

Improve modeling and simulation for infrastructure objects
Reduction of modeling uncertainty

Choice of analysis level of sophistication

Account for parametric uncertainty

Goal: Predict and Inform rather than (force) fit

Engineer needs to know!
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Numerical Prediction under Uncertainty

» Modeling Uncertainty, Simplifying assumptions

Low, medium, high sophistication modeling and simulation

Choice of sophistication level for confidence in results

» Parametric Uncertainty, Mi; + Cu; + KPu; = F(t),

Uncertain mass M, viscous damping C and stiffness K€°
Uncertain loads, F(t)

Results are PDFs and CDFs for o, €j, Uj, Uj, U;
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Modeling Uncertainty
- Important (?!) features are simplified, 1C vs 3C, inelasticity

- Modeling simplifications are justifiable if one or two level
higher sophistication model demonstrates that features
being simplified out are less or not important
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Parametric Uncertainty: Material and Motions

'Young's Modulus, E (kPa)
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Real-ESSI Simulator System

The Real-ESSI, Realistic Modeling and Simulation of
Earthquakes, Soils, Structures and their Interaction. Simulator
is a software, hardware and documentation system for time
domain, linear and nonlinear, inelastic, deterministic or
probabilistic, 3D, modeling and simulation of:

- statics and dynamics of soil,

- statics and dynamics of structures,

- statics of soil-structure systems, and

- dynamics of earthquake-soil-structure system interaction
Used for:

- Design: linear elastic, load combinations, dimensioning
- Assessment: nonlinear/inelastic, risk, safety margins
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Uncertainty Propagation through Inelastic System

» Incremental el—pl constitutive equation
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» Dynamic Finite Elements

Mi; + Cu; + K®Pu; = F(t)

» Material and loads are uncertain
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Previous Work

» Linear algebraic or differential equations:

» Variable Transf. Method (Montgomery and Runger 2003)
» Cumulant Expansion Method (Gardiner 2004)

» Nonlinear differential equations:

» Monte Carlo Simulation (Schueller 1997, De Lima et al
2001, Mellah et al. 2000, Griffiths et al. 2005...)
— can be accurate, very costly

» Perturbation Method (Anders and Hori 2000, Kleiber and
Hien 1992, Matthies et al. 1997)
— first and second order Taylor series expansion about
mean - limited to problems with small C.O.V. and inherits
"closure problem”

» SFEM (Ghanem and Spanos 1989, Matthies et al, 2004,
2005, 2014...) .
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3D Fokker-Planck-Kolmogorov Equation

6P(Uijg;r,t),t) _ 65,,,,, [{ <7’]mn(0'mn(xta 1), Emrs(Xt), €rs(Xt, t))>
/Ot drCovs [877mn(0mn(xt )3(E;:ZrS(Xt) s ers(Xt, t))

nab(oab(xt_T t— 7‘) Eabcd(Xt—'r) ch(xt—r t— 7‘):| } P(O‘ij(Xt t) t):|

+ _* [{ / drCovy l:T]mn(O'mn(Xt ), Emnrs(Xt), €rs(Xt, 1));

80’mn60'ab
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(Jeremic et al. 2007)
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FPK Equation

» Advection-diffusion equation

oP(o,t) O )
5 = NyP(o,t) — py {N@)P(o,t)}

» Complete probabilistic description of response

» Solution PDF is second-order exact to covariance of time
(exact mean and variance)

» It is deterministic equation in probability density space

» |t is linear PDE in probability density space — simplifies
the numerical solution process
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Template Solution of FPK Equation

» FPK diffusion—advection equation is applicable to any
material model — only the coefficients N(;y and N7 are
different for different material models

» Initial condition

» Deterministic — Dirac delta function — P(c,0) = (o)
» Random — Any given distribution

» Boundary condition: Reflecting BC — conserves
probability mass ¢(a, )|t Boundaries = 0
» Solve using finite differences and/or finite elements
» However (!!) it is a stress solution and probabilistic
stiffness is an approximation!
-~ ‘
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Probabilistic Elastic-Plastic Response

0.0003

0.00025

0.0002

Stress (MPa)

0.00015

0.0001

0.00005

0 0.0108 0.0216 0.0324 0.0432 0.054
Strain (%) ~




Cam Clay with Random G, M and pg

Strain (%)

20

0 Strain (%) 1.62 0
0.03
0.04
0.025
0.03 0.02
3
g g
2 = 0.015
g 0.02 K
& £
1z
0.01
0.01
0.005
0 0
0 0.05 0.1 0.15 0.2 0.25 0.3 0 0.05 0.1

Time (s)

0.15

Time (s)

0.2 0.25 0.3

.3



Introduction Uncertain Inelastic Computational Mechanics Applications Summary
000000 00000000@000000000 0000000000000 000 000

Time Domain Stochastic Galerkin Method

Dynamic Finite Elements Mu; + Cu; + K®Pu; = F(t)
» Input random field/process(non-Gaussian, heterogeneous/
non-stationary)
Multi-dimensional Hermite Polynomial Chaos (PC) with
known coefficients
» Output response process
Multi-dimensional Hermite PC with unknown coefficients

» Galerkin projection: minimize the error to compute
unknown coefficients of response process
» Time integration using Newmark’s method

Update coefficients following an elastic-plastic constitutive
law at each time step

'Aﬁ A
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Polynomial Chaos Representation

Material random field:

D(x,0) = S ai(x)Vi({&(9)})
Seismic moti}gns random process:
fm(t,0) = 3221 fm ()W ({€k(0)})

Displacemeng response:
Un(t,0) = > 424 du(B)Wk({€1(0)})

where a;(x), fy;(t) are known PC coefficients, while dp(t) are
unknown PC coefficients.
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Direct Probabilistic Constitutive Solution in 1D

» Zero elastic region elasto-plasticity with stochastic
Armstrong-Frederick kinematic hardening
Ao = HzA Ei =do/de = Hy+ cro

» Uncertain: init. stiff. Ha, shear strength Hz/c;, strain Ae:
Ha = Zh,'q),'; Cr 2cid;; Ae = XA€o;

» Resulting stress and stiffness are also uncertain

'Aﬁ A
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Probabilistic Stiffness Solution

Analytic product for all the components,
£EP _ | gel Eqmnmmn”pqE gkl
ikl = | Skl T, e _

Nrs rstumtu 5* *
Stiffness: each Polynomial Chaos component is updated
incrementally

P Ps

E = = {2l hi< 0iby > £37°, S goptt <
¢j¢/¢1 >}

E,g+1 = b= A hi < 00p > £ 37 S ot <
®;d,dp >}
Total stiffness is :
Etn+1 ZIE El‘l+1¢i
f;j A
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Direct Probabilistic Stress Solution

> Analytic product for each stress component,

> Incremental stress: each Polynomial Chaos component is
updated incremental!g/

A‘71nJr1 = <¢11¢1>{Zi 4 2561 hilef < &Py >
P
_2151 °1 L% GAGo] < Ojdddq >}

AJ”"H - <%17¢P>{ZP” Pi h/Aeﬂ < PidPp >
— Y0 Skt Sy AT < &0 0p >}

» Stress update:
Po' n+1 L Po- na. Po- n+1 )
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Probabilistic Elastic-Plastic Response

of Uncertain Stress
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Stochastic Elastic-Plastic Finite Element Method

» Material uncertainty expanded into stochastic shape funcs.

» Loading uncertainty expanded into stochastic shape funcs.

» Displacement expanded into stochastic shape funcs.

» Jeremic et al. 2011

z”go < DUy > KK
o < dpwowy > KW

. :
4o < dWoup > KK
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SEPFEM: System Size

0000000000000 000

» SEPFEM offers a complete solution (single step)

» It is NOT based on Monte Carlo approach

» System of equations does grow (!)

# KL terms material # KL terms load PC order displacement

Summary
[e]e]e}

Total # terms per DoF

] 7 10
4 4 20
4 4 30
6 6 10
6 6 20
6 6 30
8 8 10
8 8 20
8 8 30
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SEPFEM: Example in 1D
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SEPFEM: Example in 3D
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Current State of Art Seismic Risk Analysis (SRA)

Intensity measure (IM) selected as a proxy for ground
motions, usually Spectral acceleration Sa(Ty)

Ground Motion Prediction Equations (GMPESs) need
development, ergodic or site specific

Probabilistic seismic hazard analysis (PSHA)

Fragility analysis P(EDP > x|IM = z), deterministic time
domain FEM, Monte Carlo (MC)

Aﬁ |f\
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Seismic Risk Analysis Challenges

Jeremic et al.
Uncertain ESSI

Miscommunication between seismologists and structural
engineers, Sa(Ty) not compatible with nonlinear FEM

IMs difficult to choose, Spectral Acc, PGA, PGV...
Single IM does not contain all/most uncertainty
Monte Carlo, not accurate enough for tails

Monte Carlo, computationally expensive, CyberShake for
LA, 20,000 cases, 100y runtime, (Maechling et al. 2007)

f;j A
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Time Domain Intrusive SRA Framework

Jeremic et al.
Uncertain ESSI

Stochastic Elastic-Plastic Finite Element Method,
SEPFEM, Mu; + Cu; + K®u; = F(t),

Uncertain seismic loads, from uncertain seismic motions,
using Domain Reduction Method

Uncertain elastic-plastic material, stress and stiffness
solution using Forward Kolmogorov, Fokker-Planck
equation

Results, probability distribution functions for oy, €3, u;...

f;j A
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Stochastic Seismic Motion Development

» UCERF3 (Field et al. 2014)

» Stochastic motions (Boore 2003)

» Polynomial Chaos Karhunen-Loéve expansion

» Domain Reduction Method for P (Bielak et al. 2003)
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Stochastic Ground Motion Modeling

Jeremic et al.
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Modeling fundamental characteristics of uncertain ground
motions, Stochastic Fourier amplitude spectra (FAS). and
Stochastic Fourier phase spectra (FPS) and not specific IM

Mean behavior of stochastic FAS, w? source radiation
spectrum by Brune(1970), and Boore(1983, 2003, 2015).

Variability models for stochastic FAS, FAS GMPEs by Bora
et al. (2015, 2018), Bayless & Abrahamson (2019),
Stafford(2017) and Bayless & Abrahamson (2018).

Stochastic FPS by phase derivative (Boore,2005), Logistic
phase derivative model by Baglio & Abrahamson (2017)

f;j A
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Uncertain Model Description
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Stochastic Ground Representation
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Probabilistic Dynamic Response

, Probabilistic response of top floor from SFEM
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Probabilistic Dynamic Response

Probabilistic density of displacements evolution of top floor
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Maximum Inter-Story Drift Ratio (MIDR)
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Seismic Risk Analysis
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Sensitivity Study
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Sensitivity Study

Fundamental frequency f increases from 1.6Hz to 8Hz:

1072

Annual Exceedance Rate

MIDR [%]




Seismic Risk, Uncertain Material
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Appropriate Science Quotes

» Francgois-Marie Arouet, Voltaire: "Le doute n’est pas une
condition agréable, mais la certitude est absurde."

» Niklaus Wirth: "Software is getting slower more rapidly
than hardware becomes faster."
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Numerical modeling to predict and inform, rather than fit

Sophisticated inelastic/nonlinear determinstic/probabilistic
modeling and simulations needs to be done carefully and
in phases

Education and Training is the key!

Collaborators: Feng, Yang, Behbehani, Sinha, Wang,
Karapiperis, Wang, Lacoure, Pisand, Abell, Tafazzoli, Jie,
Preisig, Tasiopoulou, Watanabe, Cheng, Yang.

Funding from and collaboration with the ATC/US-FEMA,
US-DOE, US-NRC, US-NSF, CNSC-CCSN, UN-IAEA, and
Shimizu Corp. is greatly appreciated,
http://sokocalo.engr.ucdavis.edu/~Jjeremic Nt
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