next up previous
Next: Elastic-Plastic Constitutive Law Up: CALIBRATION OF ELASTIC-PLASTIC MATERIAL Previous: Introduction


Elastic Cross-Anisotropic Constitutive Law

The linear, small-strain, elastic behavior of cross-anisotropic material is governed by the following generalized Hooke's law [4]:

$\displaystyle \epsilon_{11}=\frac{1}{E}\sigma_{11} - \frac{E-2G}{2GE} \sigma_{22} - \frac{E^{\prime}-2G'}{2G'E'}\sigma_{33}$ (1)

$\displaystyle \epsilon_{22}=-\frac{E-2G}{2GE}\sigma_{11}+\frac{1}{E}\sigma_{22}-\frac{E'-2G'}{2G'E'}\sigma_{33}$ (2)

$\displaystyle \epsilon_{33}=-\frac{E-2G''}{2G''E}\sigma_{11}-\frac{E-2G''}{2G''E}\sigma_{22}+\frac{1}{E'}\sigma_{33}$ (3)

$\displaystyle \epsilon_{23}=\frac{1}{2G''}\sigma_{23} \;\;\;$   ;$\displaystyle \;\;\; \epsilon_{13}=\frac{1}{2G''}\sigma_{13} \;\;\;$   ;$\displaystyle \;\;\; \epsilon_{12}=\frac{1}{2G}\sigma_{12}$ (4)

where, in equation (1) $ E = E_{11} $ = in-plane Young's modulus; $ E' = E_{33} $ = out-of-plane Young's modulus; $ G = G_{12} $ = in-plane shear modulus; $ G' =
G_{31} $ = out-of-plane shear modulus; $ G'' = G_{13} $ = out-of-plane shear modulus. Note that ''in-plane'' refers to the 1-2 isotropy plane (horizontal) and ''out-of-plane'' refers to the 3-direction (assumed vertical).

The above elastic material constants, $ E$, $ E'$, $ G$, $ G'$, and $ G''$ can be determined from three-dimensional P-wave and shear wave tests. The equation relating in-plane Young's modulus ($ E$) and in-plane P-wave velocity ($ V_{c_{i}}$; $ i=1, 2$) is,

$\displaystyle E=\rho V^2_{c_{i}}$ (5)

Similarly, the equation relating out-of-plane Young's modulus ($ E'$) and out-of-plane P-wave velocity ($ V_{c_{3}}$) is,

$\displaystyle E'=\rho V^2_{c_{3}}$ (6)

The equation relating in-plane shear modulus ($ G$) and in-plane shear wave velocity with horizontal polarization ( $ V^H_{s_{i}}$; $ i=1, 2$) is,

$\displaystyle G=\rho (V^H_{s_{i}})^2$ (7)

where wave propagation is in the i-direction (i=1,2) with horizontal polarization. The equation relating out-of-plane shear modulus ($ G'$) and out-of-plane shear wave velocity ( $ V_{s_{3}})$is,

$\displaystyle G'=\rho (V_{s_{3}})^2$ (8)

where wave propagation is in the 3-direction with horizontal polarization. Finally, the equation relating out-of-plane shear modulus ($ G''$) and in-plane shear wave velocity with vertical polarization ( $ V^V_{s_{i}}$; $ i=1, 2$) is,

$\displaystyle G''=\rho (V^V_{s_{i}})^2$ (9)

where wave propagation is in the i-direction ($ i=1, 2$) with vertical polarization.


next up previous
Next: Elastic-Plastic Constitutive Law Up: CALIBRATION OF ELASTIC-PLASTIC MATERIAL Previous: Introduction
Boris Jeremic 2003-11-14