next up previous
Next: Material and Methods Up: CALIBRATION OF ELASTIC-PLASTIC MATERIAL Previous: Elastic Cross-Anisotropic Constitutive Law


Elastic-Plastic Constitutive Law

The most general form of elastic-perfectly plastic incremental stress-strain relationship can be expressed as [1],

$\displaystyle d\sigma_{ij}=C_{ijkl}^ep d\epsilon_{kl} \;\;\;\;\;\;$   where$\displaystyle \;\;\;\;\;\; C_{ijkl}^ep = C_{ijkl} - \frac{C_{ijmn} \displaystyl...
...sigma_{rs}}}} C_{rstu} \displaystyle{\frac{\partial f}{\partial \sigma_{tu}}} }$ (10)

The coefficient tensor $ C_{ijkl}^ep$ is the elastic-plastic tensor of tangent moduli for an elastic-perfectly plastic material. The tensor of elastic moduli, $ C_{ijkl}$, can be expressed in terms of $ E$ and $ \nu$ as [1],

$\displaystyle C_{ijkl} = \frac{E}{2(1+\nu)}\left[\frac{2\nu}{(1-\nu)}\delta_{ij}\delta_{kl}+\delta_{ik}\delta_{jl}+\delta_{il}\delta_{jk}\right]$ (11)

By using Hooke's law and additive decomposition of strain tensors in the elastic and plastic parts [8] we obtain

$\displaystyle d\sigma_{ij}=C_{ijkl}d\epsilon_{kl}-d\lambda C_{ijkl}\frac{\partial f}{\partial \sigma_{kl}}$ (12)

By substituting Eq. (11) into Eq. (12), and with $ \nu=(1/2)(3K-2G)/(3K+G)$ it follows

$\displaystyle d\sigma_{ij}=2Gd\epsilon_{ij}+Kd\epsilon_{kk}\delta_{ij}-d\lambda...
...ma_{mn}}\delta_{mn}\delta_{ij}+2G\frac{\partial f}{\partial \sigma_{ij}}\right]$ (13)

Assuming a Drucker-Prager material model, the yield function, $ f$, is given by, $ f(\sigma_{ij})=F(I_1,\sqrt{J_2})-K=0$ and hence it follows that

$\displaystyle \frac{\partial f}{\partial \sigma_{ij}}=\frac{\partial f}{\partia...
...}\delta_{ij}+\frac{1}{2\sqrt {J_2}}\frac{\partial f}{\partial \sqrt{J_2}}S_{ij}$ (14)

Substituting Eq. (14) into Eq. (13) we have,

$\displaystyle d\sigma_{ij}=2Gd\epsilon_{ij}+Kd\epsilon_{kk}\delta_{ij}-d\lambda...
...ta_{ij}+\frac{G}{\sqrt{J_2}}\frac{\partial f}{\partial \sqrt{J_2}}S_{ij}\right)$ (15)

where $ d\lambda$ has the form,

$\displaystyle d\lambda=\frac{3Kd\epsilon_{kk}\left(\frac{\partial f}{\partial I...
...{\partial I_1}\right)^2+G\left(\frac{\partial f}{\partial \sqrt{J_2}}\right)^2}$ (16)

Now, the Drucker-Prager yield condition,f, is given by

$\displaystyle f=\sqrt{J_2}+\alpha I_1-k=0$ (17)

Combining Eqs. (15), (16) & (17), we have the most general form of Drucker-Prager elastic-perfectly plastic constitutive relationship as,
$\displaystyle d\sigma_{ij}$ $\displaystyle =$ $\displaystyle \left[2G\delta_{im}\delta_{jn}+\left(K-\frac{2}{3}G\right)\delta_{ij}\delta_{mn}
\right.
-$  
    $\displaystyle \left.
\frac{\left(\frac{G}{\sqrt{J_2}}\right)S_{ij}
+
3K\alpha\d...
...ft(\frac{G}{\sqrt{J_2}}S_{mn}
+
3K\alpha\delta_{mn}\right)\right]d\epsilon_{mn}$ (18)

This relationship will be used in assessing one dimensional wave propagation characteristics of tire shred material described below.


next up previous
Next: Material and Methods Up: CALIBRATION OF ELASTIC-PLASTIC MATERIAL Previous: Elastic Cross-Anisotropic Constitutive Law
Boris Jeremic 2003-11-14